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Abstract

The interaction between a shock wave (attached to a wedge) and small amplitude, three-

dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The

paper extends the two-dimensional study of Duck et al 1, through the use of vector potentials,

which render the problem tractable by the same techniques as in the two-dimensional case, in

particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately
chosen coordinates.

Results are presented for specific classes of freestream disturbances, and the study shows

conclusively that the shock is stable to all classes of disturbances (i.e. time periodic per-

turbations to the shock do not grow downstream), provided the flow downstream of the

shock is supersonic (loosely corresponding to the weak shock solution). This is shown from

our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far
downstream of the shock.
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1 Introduction

The interaction of freestream disturbances with shock waves is an important practical prob-

lem, with particular regard to the operation of high-speed flight vehicles. Of particular

interest are the consequences of these disturbances on boundary-layer receptivity, and this

paper may be regarded as a step in this process.

In the case of an isolated shock, Moore 2, Ribner 9 and McKenzie & Westphal 4 showed

that a single wavelength entropy, acoustic or vorticity wave, upstream of the shock, produces

a disturbance comprising a mixture of all three classes downstream of the shock. When the

shock is associated with the flow past a rigid body, the situation is much more complicated,

due to the reflection and refraction of disturbances between the body surface and the shock

itself, the latter distorting as a result, a process which further complicates the flow structure.

This process was considered by Carrier _ and Van Dyke 6 with particular regard to the

problem of supersonic flow past a wedge performing small amplitude oscillations, the shock

remaining attached to the wedge tip. These problems raise questions regarding the stability

of the shock, and this aspect has been considered in the two-dimensional context (associated

with wedge flows, the shock remaining attached to the wedge tip at all times) by Levinson _,

Carrier s, Henderson & Atkinson 9, Rusanov & Sharakshannae 10and Salas & Morgan 11. The

overall conclusion is that if the flow downstream of the shock is subsonic (loosely classified

as the strong shock solution), then the shock is unstable, in so far as disturbances grow

downstream. If, on the other hand, the flow behind the shock is supersonic (loosely classified

as the weak shock solution), then the shock is stable, with disturbances not growing in

amplitude downstream.

This aspect was considered in some detail by Duck et al. 1, again for the case of super-

sonic flow past wedges, subject to two-dimensional disturbances. This latter paper (where

there is also a more detailed summary of previous work in this area) showed that two-

dimensional disturbances, impinging upon the weak shock solution, do not grow downstream,

but rather produce constant amplitude or weakly decaying oscillatory waves downstream.

The conditions which distinguish between the two types of behaviours were determined and

a decomposition of the far-field, suggested by the analytic solution, was made. The result

was that there is a shadow region dependent on the incoming disturbance. If the direc-

tion of propagation of the plane-wave acoustic disturbance generated at the shock by the

plane-wave incoming disturbance intersects the wedge surface, then there is a non-decaying

oscillatory pressure disturbance on the wedge surface. In any case, there are two weakly

decaying single-wavelength oscillatory disturbances on the wedge surface that are due to

the requirement that the shock remain attached. One is traveling at the mean-flow speed

plus the speed of sound, and the other travels at the mean-flow speed minus the speed of

sound. Thus, these are clearly regular acoustic waves which emanate from a point source

(the wedge apex) of fixed temporal frequency as prescribed by the incoming disturbance. In

addition to these more obvious effects, there is also a local field effect which is broad based

in wavelength. While the first three modes of pressure disturbances at the wedge surface

can indeed interact with the boundary layer, it is the last disturbance with the inclusion of

short wavelength disturbances that should have the most effect on the growing boundary

layer. In this latter paper, the side issue of shock stability to two-dimensional disturbances

was also addressed. The aim of the present paper is to extend the ideas of Duck et al. 1 to



three-dimensionaldisturbances;indeed,little three-dimensionalwork of this type appearsto
havebeenundertakenin the past.

2 Formulation

Throughout this paper, we use subscript 1 to denote quantities upstream of the shock, and

subscript 2 to denote downstream quantities. The wedge is taken to make an angle 0 with

respect to the oncoming flow, with (x*, y*, z*) coordinates parallel and perpendicular to the

upstream flow, with z* being the "crossflow" direction. The upstream basic flow velocity

has magnitude U_, with Mach number M1 and density p_, and temperature T_. The ratio

of specific heats 7 is assumed to be constant, and throughout this paper all our numerical

results take 9' = 1.4. The velocity vector is written as U_(u, v, w), with respect to (x*, y*, z*)

coordinates, and the density is then written p_p, pressure as p_R*T_p (where R* denotes the

gas constant) and the temperature is TiT.

The Rankine-Hugoniot relations provide a link between conditions upstream and down-

stream of the shock. For the basic (steady) flow, when the downstream flow is uniform and

parallel to the wedge surface, the following classical result is obtained (see, for example,

Liepmann and Roshko 12):

tan(fl-0) _ u-2 _ pl _ ('7- 1)M_sin2fl + 2

tan _ _1 p2 ('7 + 1)M 2 sin 2 _ '
(2.1)

where 13 is the angle between the shock and the wedge centerline (i.e., y* -- 0) and _1 and

_2 are the non-dimensional velocity components perpendicular to the shock.

The relationship (2.1) yields two possible values for fl, for a given value of 0 (for 0 <

0m_x(M1)) with the so-called "weak shock" solution generally being characterized by super-

sonic flow downstream of the shock, whilst the other "strong shock" solution is generally

characterized by downstream subsonic flow. Note, however that there does exist a small,

weak shock regime, close to 0 = 0,n_ where the downstream flow is subsonic, i.e. the

downstream sonic line does not quite coincide with 8max.

We shall be concerned with the effect of small amplitude disturbances, which are intro-

duced into the flow ahead of the shock. The corresponding two-dimensional results, as stud-

ied by McKenzie and Westphal 4, for example, may be extended into the three-dimensional

contact, in quite a straightforward manner, when the z* variation is taken to be periodic (al-

though other, more general z* variations could be accomplished using Fourier Transforms).

We take _ (<< 1) to be a measure of the amplitude of the freestream disturbance, and it

then turns out that the upstream disturbance may be classified into three distinct classes,

just as in the two-dimensional case.

(i) Acoustic waves: these are characterized by having a pressure perturbation, with

corresponding perturbations in velocity, density and temperature, but no change in entropy

or vorticity, to O(E). Disturbances of this class take the form

p = 1 + _7+ O(E2), (2.2)



u = 1 - a1¢/_ + O(c2), (2.3)
7M_(al + w)

a2eE
+ 0(¢2), (2.4)

v "TM_(al + w)

OL3_JE
w= +o(?), (2.5)

+

p = 1 + -- + O(e2), (2.6)
7

and

T = 1 e(7- 1)/_ + O(c2), (2.7)
,y

where E is the normal mode exponential, i.e.

= exp{iaaxl + ia2yl + i(_3z + iwt}, (2.8)

with
1 2

w = -cq 4- -_ll[a, + a_ + a]] 1/2 (2.9)

being the frequency for the given wavenumbers. In the above, z_ and y_ are parallel

and perpendicular to the upstream flow respectively (both perpendicular to z); the non-

dimensionalisation is carried out using one of the wavelengths of the disturbances as the

typical lengthscale, e.g. by setting al to unity. The modes with the positive sign above

in (2.9) are usually referred to as the slow modes, whilst those with the negative sign are

usually referred to as the fast modes.

(ii) Vorticity waves: these are characterized by having no density, temperature or pressure

disturbances to O(¢), and thus the upstream flow takes the form

a2 /_ + O(¢2), (2.10)
u = 1 +_a_ + a22

and

with

V_C
O_1 a3 j_ -.}- O(C2),

O_2 ^

(2.11)

(2.12)

p,T,p = 1 + O(e2), (2.13)

= -al. (2.14)

The exponential term /_ is unaltered from (2.8), and the parameters _tz and f_ must be

specified. In comparison with the two-dimensional case, the three-dimensional case allows

for an extra vorticity mode.
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(iii) Entropy waves:thesehave no disturbancepressureor velocity componentsto O(c),

and may therefore be written in the form

and

T = 1 - _/_ + O(e2),

u,p - 1 + O(e_),

v, to = 0(c2),

with w defined by (2.14) and/) by (2.8), again.

(2.15)

(2.16)

(2.17)

(2.18)

In the following section of the paper, we consider the effects that these waves have on a

shock wave attached to a wedge. The complication introduced by the presence of the wedge

is that a single mode of the above type, upstream of the shock, will trigger modes of all three

types, of all wavenumbers behind the shock; the only quantities preserved across the shock

(provided c << 1) are the frequency parameter w and the spanwise wavenumber a3.

3 The Downstream Solution

The flow downstream of the shock comprises the uniform flow solution plus a small ampli-

tude (O(e)) perturbation, triggered by the freestream disturbances described in the previous

section. We take non-dimensional coordinates parallel and perpendicular to the wedge (per-

pendicular to the z direction in both cases) as x2 and Y2, respectively, with corresponding

velocity components (u2, v_).

We now write the solution downstream of the shock in the form

u2 = U2+ _ + O(e2), (3.1)

and

v2 = e_ + O(s_),

w = e_ + O(e2),

P = P2 + st5 + O(e'2),

p = p2+ Ep+ O(e2),

(3.2)

(3.3)

(3.4)

(3.5)

T = T2 + sT + 0(_2). (3.6)

Substitution of these expansions into the governing (inviscid) equations of motion, continuity
and energy equations and equations of state then leads to

Pt + U2jSx_ + P_Ux2 + P_v_ + P2Wz = O,

1

_{_tt + U2_t_} + ),M_'_: , =0,

(3.7)

(3.8)
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and

1
m{_,+ u2_x_}+ _-_#_2 = o,

71v11

I

1
7

(3.9)

(3.10)

(3.11)

f= p2:F + T2#. (3.12)

Much of the success of the approach used by Carrier 5 Van Dyke 6 and indeed by Duck

et al. 1 was due to the ability of being able to split the solution into two components, the one

including a velocity potential (which represented the acoustic wave component of the flow),

and the other a stream function (which represented the vorticity wave component of the

flow). It is clearly not possible to use the latter in the context of three-dimensional flows,
however an alternative is the introduction of a vector potential. This concept, originally

due to Poincard 13, has been used in a number of fluid mechanics investigations over the

years, although the appropriate boundary conditions have been the subject of discussion, as

detailed by Aziz and Hellums 14

Specifically we write the perturbation velocity vector fi = (fi, _, _) in the form

fi=V¢+VAE, (3.13)

where ¢ is the velocity potential, and E the vector potential. The above represents a non-

unique representation for fi, and as such an additional relationship may be (arbitrarily)

specified. The most popular choice, and the one that we pursue here, is that the vector

potential can be required to be solenoidal, i.e.

V.E=0. (3.14)

This leads to the vorticity vector then being merely the quantity -V2E.

(3.13) into (3.8) - (3.10) leads to the equations

Substitution of

P } =0, (3.15)V2 ¢_+ U2¢_2+ _M_P-----_

and

V_{E,+ U:Ex_}= 0.

It then follows that 15satisfies

_P_[¢,+ u_¢_],P- a-}

and elimination of the dependent variables _ and 7_ gives the equation for ¢

(3.16)

(3.17)

v2¢ = _[¢, + 2u2¢_,+ u_¢_], (3.18)



where
T /2

as- M1 (3.19)

If we write E - (E 0), E (2), E(3)), then on account of our comments above, we impose the
condition

E_(12) + Ey(_) + E_ 3) = 0. (3.20)

A further quantity must also be introduced, namely ¢'(y2, z, t), which describes the displace-
ment of the shock wave from its undisturbed state.

This type of formulation then allows us to follow closely the two-dimensional approach

adopted by Duck et al. z It is now possible to write the general solution for ¢, ¢', and the

E (n) in the following form, assuming boundedness at the apex of the wedge:

• . iwUgz,_ .
zwz__.4.tot3 z r_

¢ = e , • y_.{a_cosh(uO_) + b_sinh(uO2)}J_(]%r),
v=O

and

where we have written

and

(3.21)

E (n) = e '_---_-_*''_3_ _ c(_n)J_(]ce_y_), (3.22)
u=O

• iwXy_U2 ..t_iot_ Z O0

= e ' • _d.J_(k_y2),
u----0

(3.23)

O2

= --, (3.24)
as

]¢= _, (3.25)

2

a2 (3.26)

/¢2 = ]¢2 + c_32 (3.27)
¢)2'

A = cot(/3 - 0), (3.28)

= r_ _ ,_2, (3.29)

r 2 = x_ - _2y2, (3.30)

tanh 02 = _y2/x2.

If we impose impermeability on the wedge surface, we immediately require

(3.31)

b_ = 0 Vu, (3.32)
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whilst if the shock remains attached at the tip, then do -- 0. As noted by Duck et al. 4 (for

example), it is also reasonable to set the v -- 0 coefficients of the other terms in the series

to zero, which correspond to transient-type modes, and so we write

a0 = c_1) = c_2) -- c_3) = 0. (3.33)

The key results for the velocity components and pressure are then

/_---_-a_ + a__l(1 + 5_-a,0) - au+l coshuO2J,(ker)= -e v=o-2 [keZ as

zwt+z_3z-- U2 --
--e

and

2 u_(u_-=_)

y=0

^ ^

0 = e*_- U_-_ +'°3_ (av-1 + av+l)sinh(vO2)&(_:er)
u----O

• . _ iwAya_ _. z

zwt- ,, -_v'za3 Z_dC(3) ]+e _ v:(v_-o_) i_c(_ 1) + Jv(k,_Y2)
z=0 U2 v ] ,

• iU,_t_x,_ .eZWt - _ +za3 zz_ = i/_avJv(k_r) cosh v02
v=O

v_<v_-,_) zwa_ (2)
v=0 U2 cv + 2

2iA&asc(3) + _ [ (3) _c(3)(1 +6v-l,o)))-i_c_ )] Jv(ke_y2),7- 7" _Cu+l _'-1_
k, U2Z2

(3.34)

(3.35)

2i/_o3asc(1)__t__[== (Cv+l(1) _c(1)u_l\{1 4- (_v-l,O)))] Ju(ke_Y2),
keU2Z 2

(3.36)

...... (1 + (_v-l,O) _,avq-1] c°sh(//_2)Jv(ker),"fP21Ze eZ_t_ v__.t.m3 v_ -t- --av-1 --

v_o J

(3.37)

where a-1 = c(___) = d-1 = 0, and where 6n,m is the Kronecker delta.

Although the solutions above satisfy the impermeability and apex conditions, as yet

these solutions do not satisfy the unsteady Rankine-Hugoniot conditions (McKenzie and

WestphaP) on the shock; following (and extending) the results of Duck et al. 1, these take

the form

u2 + u2_ = (l -1) R' + I (_'_I + u'I)'p2P2 (3.38)

2

, 1 fi2 as fi2 , 1 15_ (3.39)
+ + - + + ,27_ P2 2"YMI_

[_ as (3.40)' as + = 1 +--
u_- (_/_ 1)g2 P2 ("/- 1)g2P2 u2 u'

/)1 j01

(3' - 1) M1_2 + (7 - 1) M?_'



! !

v2 --v, + (_I - _2)_b'_, (3.41)

and

with

! ! -- tw2 = wl + (_t - u:)¢z, (3.42)

-- !

R' = ¢'t + Vl¢_,. (3.43)

In equations (3.38)-(3.43), a denotes the unperturbed distance along the shock, (u', v !, w')

denote the velocity perturbations perpendicular to the undisturbed shock, parallel to the

shock and perpendicular to the z direction, and parallel to the z direction, respectively, and

(_, v, 0) denote the corresponding base flow velocity components. Eliminating #2 from the

above equations, and then utilizing (3.34)-(3.37), yields the following four equations for each
of the u _> 0:

cos(_-0) - [_a,+a,_,(l+6,_,,0)-a,+l coshuOo

+ ( Lu2_2% + _ i (3) c(3)-- _%+_- __,(i+ _-,,o)) - i_c(__)

+ sin(_ - O) { _-_2_(a_-l + a"+l) sinh(vO°) + i_c(1) + i&asc(3) }U2-_'

^

-(_,- _)sin(_- 0) _a---_d_+,_(d,+_- e_-_(i+ 5_-_,o))= R(,,1), (3.44)

B, } {sin(Z- 0) [-_ r 2i_'u2 a.+1]cosh[_a_, + a_,_1(1 + _u-1,0) -- /"00

+ _c. + ,_t_+_(.(_)_ c(_)___,,1+ _-1,o) - i_4_

-cos  - +a +l,sinh  0o,+ }U2--J

+{ A2 0)-_B2 } {'vl sin(, 5'-

+ B3 _ =--=a,ke_ 2

and

ia_ ]¢e
iaa cosh(u0o)a. --_(2)u_ -_-(---

2z_U2A d,,u ] }keZ2as +_(d_,+t-dv-l(l +6_,-1,o)) +iwd_,

+ U2av-l(las + 6v-,,0) - -_s av+l cosh(u0o)

_{ R(2)- R(2)}' (3.45)

2iAdva_ c(1)+_ [ (1) (1)
:" "z _Cu+l -- Cu-1)(1 + (_u-l,O))-it_3(Ul-U2)du "-- R (4).
keU2¢2

(3.46)



These equations must also be augmentedwith the condition arising from the solenoidal
condition on the vector potential namely

]% 2iA&as (2)iWc_l)+ -------_c_ + _ i (2) _(2) ia3c(_3) o.
U2 2( keU2/3 2 Lcv+I "_-1)(1 + 6_-1,0)) + =

(3.47)

Terms used in the above are

tanh 00 = _ tan(/3 - 9), (3.48)

1

A1 = 5' (3.49)

1(1)A2=_ 1 _ ,

a$

A3 = -_u2 '

2
a s

B1 = 1+
('7 - 1)_'

B2=- (7--])u_ 1- ,

(3.50)

(3.51)

(3.52)

(3.53)

7as (3.54)
B3 - (7- 1)_2"

The R (n), as in Duck et al. 1, are to be determined from the freestream conditions. In

particular in order to write the exponential terms, arising from the upstream solution, in

terms of Bessel functions the following is particularly useful:

• U_,wX

exp[i(al cot/3 + a2)(cos 0 + A sin O)y2] = e-'_Y2e isinOk_g;y_ (3.55)

where

• vow, _., eiVO ( 1)ve-wO-_y2 + - ^ ^
= e 2 o /_..., Jv(ke_y2),

_,=o 1 + 6_,,o
(3.56)

O=sin_l{(cqc°t/3+a2)(c°s0+Asin0) + v_ }
^ ^ u_-,1 . (3.57)
k_(

Other details are routine, and omitted for reasons of brevity.

The combined system (3.44)-(3.47) then represents a closed (recursive-type) system de-

,.(n) d,+l.termining the a,+l, _,+1,



4 Some Numerical Results

The first set of data we present is for the particular case M1 -- 5, 0 = 25 ° (weak shock

solution), for the particular case of a slow acoustic mode with c_1 -- 1, c_2 = 0, and _3 = 1.

Fig. la shows results for the perturbation pressure on the wall (y: -- 0). Here, and in all

cases the solidus denotes the real part of a function, the dashed line the imaginary part.

This figure presents a picture reminiscent of results found in a number of corresponding two-

dimensional cases by Duck et al. 1, namely that of an oscillatory-type nature downstream.

Fig. lb shows the corresponding perturbation shock location; this too takes on a similarly

oscillatory nature. Figs. 2a, 2b show the corresponding results for the fast mode case (other

data remaining the same as for figs. 1). These figures are to be compared with fig. 2 and

fig. 3 of Duck et al. 1 where the same conditions apply except that (_3 -- 0 in those graphs.

The difference between the two-dimensional results and the three-dimensional results are in

whether or not the disturbance produces an acoustic wave behind the shock that intersects

with the surface. In response to this particular slow mode, the pressure response at the

surface for the two-dimensional disturbance decays algebraically while the shock position

shows a characteristic single wavelength response in the far-field limit. On the other hand,

the surface pressure response to the three-dimensional slow-mode disturbance does not decay

and shows a multi-wavelength pattern as is to be expected if a decomposition of the far field

behaviour applies to the three-dimensional case as it does for the two-dimensional case.

The shock position shows a two-wavelength structure as would be expected by the primary

acoustic disturbance reflecting off the wedge surface and interacting with the shock from

behind. There is very little difference between the responses to a two-dimensional fast-

mode disturbance and a three-dimensional fast-mode disturbance. A search in parameter

space would lead to the same conclusion as in the two-dimensional case: either the surface

pressure has a non-decaving component and an algebraically decaying component or it has

only an algebraically decaying component. This is significant in that the solution in the

absence of a wedge indicates that the choices are between only a non-decaying response and

an exponentially decaying response (see Hussaini et al. 15, Jackson et al. 16, Lasseigne &

Hussaini 17). This issue was pursued in detail in Duck et al. 1 where it is determined that

the condition that the shock remain attached to the apex of the wedge is the source for

the algebraically decaying portion of the response - the apex is in effect a point source for

additional acoustic waves. The interaction of these algebraically decaying acoustic waves

with the shock in turn produces an algebraically decaying portion in both the entropy and

vorticity modes. Another reason that it is important to determine that the pressure has

only a decaying or sustained oscillatory behaviour downstream is that, as mentioned in the

analysis of the response to the two-dimensional disturbances, the potential functions have

components of exponential growth in them. The calculation of the physical quantities of

pressure, velocity and vorticity are therefore dependent on some fortuitous cancellations, or

they themselves would be exponentially growing. In the following section we investigate the
downstream behaviour of the three-dimensional perturbation solution in some detail.
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5 The Far Downstream Behaviour/Stability Problem

The results of the previous section show that a general growth in physical quantities, as x2

increases does not occur even though the potential functions have an exponentially growing

component in them. This is similar to the two-dimensional results as considered by Duck

et al. 1, in which it was shown by examining the recurrence relations that only decaying or

sustained physical solution oscillations were possible. The same type of analysis is possible

for the three-dimensional case, but indeed has its own peculiarities as will be seen.

In order to analyze the x2 -+ oc behaviour, we consider the homogeneous solution of the

system (3.44)-(3.47), and consider the limit as v --+ oc. In particular, we write

c ('_) _ C_'*)K _', d_, _ DoK _', and a_, _ AoK% -_'°°, (5.i)

where K is an eigenvalue whose precise value (including location in complex space) serves

to determine the ultimate downstream behaviour of the disturbance. If IK] > 1, then using

the generating function for Bessel functions, we have (for example)

E,_°¢=1 d_,J_,(z) E,,___ DoK_'J_,(z)

_(_-_)_Doe_ as Jzl -+ _.

(5.2)

Thus exponential growth occurs as Iz. _ oc if _ {z (K--_)} > 0. If we substitute (5.1)

into (3.44) - (3.47), allow v --+ co, and discard the inhomogeneous terms, then we obtain the

following five linear homogeneous equations for the coefficients A0, Co(n) and Do:

1.- iwr(2)_he [( iA&as _(K K)] C°(1)_z/3Ao - _-_2_o heU2f) 2 + - - i/3(_, - _2)Do = 0, (5.3)

iWc_l)+ he [ iA&as _ 1]C_2) i3C_3) O, (5.4)u2 -Lu23----_ + _(K - -_) + =

f ke

cos(_ - o) _---7
t a eoo ]-- + --_ - e-°° K Ao

+ke[( he--_2_2iA&as+_(K_K)]C_3)_i_C_2)}

_ * ^ Oo e-°°K)Ao i3C_,) + U2 "_°+sin(/3 0)4(/t + +

^

--(_l-_2) sin(_-0)ke heC)2a _+ (K- ) Do=0,

{AI + - e-°°K] Ao

(5._)
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ee° e_aOK)Ao i_C_l)+ U2,-,o J- cos( - 0) + +

+ { Z2 - [ke i_U2A ^ 1

+ B3 7 \D + as g e-°°K Ao = O. (5.6)

This equation is nonlinear in K but can be converted to a tenth-order linear, generalized

eigenvalue problem, which may be solved using the QZ algorithm by using the additional
variables

(5.7)
[90 = K Do.

It was shown by Duck et al. 4 that in the two-dimensional case, for situations in which the

downstream flow was supersonic, there were four imaginary eigenvalues (all with IKI < 1),
and two complex eigenvalues given by

E -a:11'2} (5.8)

However, although these complex eigenvalues are such that IK[ > 1, in both cases Do = 0,

and due to some "fortuitous" cancellations, all physical quantities remain bounded as x2 --+

(x) even though it is determined that the potential functions themselves grow exponentially.

In the three-dimensional case, we may expect, ten eigenvalues instead of the six in the

two-dimensional case. However it turns out generally that there are just eight distinct

eigenvalues (two of the eigenvalues being double eigenvalues). Generally we find: (i) four

imaginary eigenvalues, (ii) one complex conjugate pair of double eigenvalues of the form

+K,. + iK_, and (iii) one complex conjugate pair of eigenvalues also of the form +K,. + iKi.

For 9 -- 25 °, -M1 = 5 al = 1 and c_2 = 0, the four imaginary eigenvalues have magnitude

less than unity even as a3 increases from zero. The eigensolutions associated with these

eigenvalues do not contribute to any growth in any of the quantities calculated. Most in-

teresting, however, is the variation of these four eigenvalues as the wedge angle is increased.

All four eigenvalues approach K = i at the maximum wedge angle.

The (imaginary part of the) eigenvalues described by (i) are shown in fig. 3a, whilst the

real and imaginary parts of the eigenvalues described by (ii) and (iii) are shown in figs 3b,

3c respectively. Here we have just shown the eigenvalues with the positive value of Kr (the

other eigenvalue, corresponding to -Kr + iKi may obviously be simply deduced). We next

consider the effect of varying 0, for the parameters M1 -- 5, al -- 1, a2 = 0, and a3 = 1. The

variation of Ki of family (i) is shown in fig. 4a, and the variation of the real and imaginary

parts of eigenvalues described by (ii) and (iii) is shown in figs. 4b and 4c respectively. Again,

just the positive values of Kr are shown. It is seen that the double eigenvalues described bv

(ii) are the only ones with [K] > 1 and therefore lead to potential exponential growth. It

12



turns out that an analytic description of the eigenvaluesdescribedby (ii) is possible. The
result is

[K= _ + U_ . (5.9)

It is also possible to obtain analytic results for one set of eigen-coefficients corresponding to

these eigenvalues, namely

{ }
_iAoU_ __(ge-OO + e,o) + a3 (g- -_) - u2 J (5.10)

Co(l = 2 K !

_ r_ _(/___)]_ 'o?U2 -]- _ - U2 L u2 -

-- _ -_io_aAo + L u2

Do = 0.

2

+ io¢3C_ 1) },

(5.11)

(5.12)

(5.13)

The above solution readily reduces to the two-dimensional solution in the limit a3 --+ 0. Some

understanding of the origin of this other family of coefficients for this eigenvalue, and also

of the additional complex eigenvalue (iii) may be made by considering the two-dimensional

limit, a3 -+ 0 and seeking a solution to the system with Ao = Do = C_ 3) "- 0. After some

algebra, we find the following (four) eigenvalues:

2

(5.14)

together with

^ ^' 1 2Ai]_as.

c_1)- u_ _c_2){_:k _ } (5.15)
Two of the above values for K correspond to (5.9), and this partly explains the origin of the

double eigenvalues. As c_3 increases from zero, it is expected that A0, Do, and C_ 3) will no

longer be zero for this branch. The other pair of eigenvalues correspond to the eigenvalues

described by (iii).

Again it is important to note is that with the exception of the eigenvalues (ii), all eigenval-

ues of K correspond to tKI < 1, and thus are of limited physical significance. Interestingly at

the maximum value of 0, (corresponding to the maximum wedge angle for attached flow at a

particular freestream Mach number), all eigenvalues take on the same value, K = i. Turning

now to the effects of the eigenvalues described by (ii), again, as in the two-dimensional case,

it turns out that although seemingly these eigensolutions correspond to unstable (grow-

ing) downstream solutions, in fact the evaluation of physical quantities leads to solutions

13



downstreamwhich remain bounded.This is best illustrated by defining the following set of
functions:

• . it_z._ iw)_y2¢ 2 . O0

__,(n) = c_n)etwt--'ff'_ -_ +'azz E K'J,(ke_y2), (5.16)

V_--00

• i_Uozo . O0

. v.ot-_+wt3z
_p = Aoe 2 , _ {KeO:-°°}_J,(ker), (5.17)

V=--(2_

where K is defined by (5.9) and we write 1_ = (/_(1),/_(2),/_(3)). It would be expected that

/_ and ¢ determine the far-downstream behaviour of the flow which grows downstream.

However inspection of the solution above, in the cases considered, leads to the conclusion
that

V$= -VAE. (5.18)

This then leads to all velocity components (and hence all physical quantities) remaining

bounded downstream. Numerically, it is determined that all physical quantities remained

bounded no matter what the parameters selected for the calculation, thus the above must

hold for all eigensolutions with IKI > 1.

In summary, therefore, we see that provided the flow downstream is supersonic then

disturbances will not grow downstream. This boundary of downstream behaviours is inde-

pendent of the crossflow wavenumber a3, and occurs along the 'line' where _ = 0 (where

k and ke simultaneously become singular, and also change from being real to imaginary

quantities). The result is that all of the Bessel functions in the series (3.21)-(3.23) will grow

downstream if the downstream flow is subsonic (although we note the comments of Salas &

Morgan H stating that strong shock solutions could perhaps be stable under a different set

of boundary conditions).

We now address the nature of the downstream response to sustained excitation (i.e.

acoustic waves, entropy waves, or vorticity waves). Arguments similar to those employed by

Duck et al. 1 are again appropriate. The frequency of the disturbance downstream of the

shock is determined by the frequency of the disturbance upstream of the shock and both

wavenumbers of the disturbance tangential to the shock are also fixed by the deflection of the

shock produced by the upstream disturbance. There is a finite range of tangential wavenum-

bets that exclude the existence of plane acoustic waves which propagate downstream. If

the tangential wavenumbers lie outside of this range, then a plane wave propagates at an

angle 0p to the shock. In the case of the tangential wavenumbers being within the excluded

range, an acoustic field is generated that decays algebraically rather than exponentially as

would be the case in the absence of the wedge. If the tangential wavenumber is outside of

the excluded range, then the solution in the presence of the wedge exhibits two types of be-

haviour, dependent upon the angle of propagation of an acoustic disturbance in the absence

of the wedge. If the angle of propagation 0p is greater than the angle between the shock and

the wedge fl -/7, then the pressure disturbances generated at the shock intersect with and

reflect from the wedge surface, leading to a non-decaying pressure field everywhere between

the shock and the wedge surface, with a superimposed algebraically decaying pressure field

owing to the requirement of an attached shock and zero velocity normal to the wedge sur-

face. If the angle of propagation 0p is less than the angle between the shock and the wedge

surface, then the pressure field is divided into two regions by a ray emanating from the apex

14



and parallel to the direction of propagation of the pressure disturbance in the absence of

the wedge. Between the shock and this ray there is a non-decaying pressure field, with the

aforementioned superimposed algebraically decaying component. Between the ray and the

wedge surface the pressure field is algebraically decaying and there is no component with

sustained oscillations. This was referred to as the shadow region by Duck et al. 1

The various downstream limits are determined by the value of _. If _ is real, then the

wavenumber of the imposed disturbances lies within the excluded range, and the pressure

along any ray _2 = constant decays algebraically For 82 -- 80 the solutions does not decay

leading to the appropriate oscillatory behaviour necessary to match conditions at the shock.

If _ is complex, then the condition

(alcotE + a2)(cos8 + AsinS) +
u_ -_

> 1, (5.19)

is satisfied. We also note that for equation (3.55) to be satisfied then sin 0 must remain real,

which requires that

= +_/2-/_,, (5.20)

where

-; v_-a_ . (5.21)0i = cosh -1 ± (al cot _ + az)(cos 8 + A sin 8) +

0i is related to the angle between the direction of the shock and the direction of the acoustic

disturbance 8p through tanh 0_ = _ tan 8v. If _i is greater than 80, then the generated or

transmitted acoustic waves intersect the wedge surface. For 0 < _i < 80, there are two

regions: a region of sustained oscillatory behaviour of the pressure field near the shock when

82 > 8i, and a region of algebraic decay of the pressure field near the wedge surface when

82 <0i

These features are common to those found in the two-dimensional case by Duck et al.

1 Additionally, we can expect that the downstream (forced) behaviour will take the same

form as in the two dimensional case. Taking the wall pressure, for example, we may write

the decomposition

e-iWt-i_zp

_1_2 _ ( _..L_5.2._ _ _ _
q- PlX 2 " e ,v:-,_ 4) + p2x_l/2e-(V2+,, " +Q(x2),

(5.22)
i.e., a solution with an oscillatory component, two decaying acoustic waves, and a (faster)

decaying component, Q(x2).

6 Conclusions

The interaction between a shock wave and three-dimensional freestream disturbances has

been considered, in particular the nature of the flow far downstream. The somewhat fortu-

itous cancelations that were found to occur in the analogous two-dimensional work (Duck
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et al. 1), again intriguingly occur, yielding a non-growingphysical solution downstream,
thus confirming the stability of shocks with downstream supersonic flow, in line with the

widely-held belief regarding the stability of such shock waves. Our results also point to the

'instability' of shocks with downstream subsonic flow, since in that case the argument of

the Bessel functions in (3.21)-(3.24) becomes imaginary, and as a result exponential growth

will be expected downstream. Finally we note that the location of the boundary between

growing and non-growing downstream waves is unaffected by the crossflow wavenumber az.
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