354 research outputs found

    Conductance of nano-systems with interactions coupled via conduction electrons: Effect of indirect exchange interactions

    Get PDF
    A nano-system in which electrons interact and in contact with Fermi leads gives rise to an effective one-body scattering which depends on the presence of other scatterers in the attached leads. This non local effect is a pure many-body effect that one neglects when one takes non interacting models for describing quantum transport. This enhances the non-local character of the quantum conductance by exchange interactions of a type similar to the RKKY-interaction between local magnetic moments. A theoretical study of this effect is given assuming the Hartree-Fock approximation for spinless fermions in an infinite chain embedding two scatterers separated by a segment of length L\_c. The fermions interact only inside the two scatterers. The dependence of one scatterer onto the other exhibits oscillations which decay as 1/L\_c and which are suppressed when L\_c exceeds the thermal length L\_T. The Hartree-Fock results are compared with exact numerical results obtained with the embedding method and the DMRG algorithm

    From bottom landers to observatory networks

    Get PDF
    For a long time, deep-sea investigation relied on autonomous bottom landers. Landers can vary in size from 200 kg weight to more than 2 t for the heaviest scientific landers and are used during exploration cruises on medium periods, from one week to some months. Today, new requirements appear. Scientists want to understand in detail the phenomena outlined during exploration cruises, to elaborate a model for future forecasting. For this, it is necessary to deploy instrumentation at a precise location often for a long period. A new mode of ocean science investigation using longterm seafloor observatories to obtain four dimensional data sets has appeared. Although this concept has been proposed for many years, the high level of investment required limits the number of projects implemented. Only multidisciplinary programs, supported by a strong social requirement were funded. Some observatories have been deployed

    Scaling Law for a Magnetic Impurity Model with Two-Body Hybridization

    Full text link
    We consider a magnetic impurity coupled to the hybridizing and screening channels of a conduction band. The model is solved in the framework of poor man's scaling and Cardy's generalized theories. We point out that it is important to include a two-body hybridization if the scaling theory is to be valid for the band width larger than UU. We map out the boundary of the Fermi-non-Fermi liquid phase transition as a function of the model parameters.Comment: 14 pages, latex, 1 figure included

    Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement

    Full text link
    We present here an overview of the Fourier Transform Scanning Tunneling spectroscopy technique (FT-STS). This technique allows one to probe the electronic properties of a two-dimensional system by analyzing the standing waves formed in the vicinity of defects. We review both the experimental and theoretical aspects of this approach, basing our analysis on some of our previous results, as well as on other results described in the literature. We explain how the topology of the constant energy maps can be deduced from the FT of dI/dV map images which exhibit standing waves patterns. We show that not only the position of the features observed in the FT maps, but also their shape can be explained using different theoretical models of different levels of approximation. Thus, starting with the classical and well known expression of the Lindhard susceptibility which describes the screening of electron in a free electron gas, we show that from the momentum dependence of the susceptibility we can deduce the topology of the constant energy maps in a joint density of states approximation (JDOS). We describe how some of the specific features predicted by the JDOS are (or are not) observed experimentally in the FT maps. The role of the phase factors which are neglected in the rough JDOS approximation is described using the stationary phase conditions. We present also the technique of the T-matrix approximation, which takes into account accurately these phase factors. This technique has been successfully applied to normal metals, as well as to systems with more complicated constant energy contours. We present results recently obtained on graphene systems which demonstrate the power of this technique, and the usefulness of local measurements for determining the band structure, the map of the Fermi energy and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of Physics D: Applied Physic

    Time-Dependent Partition-Free Approach in Resonant Tunneling Systems

    Full text link
    An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in order to deal with the time-dependent current response of a resonant tunneling system. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No fictitious partitions are used. Besides the steady-state responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under what circumstances a steady-state current develops and compare our result with the one obtained in the partitioned scheme. We prove a Theorem of asymptotic Equivalence between the two schemes for arbitrary time-dependent disturbances. We also show that the steady-state current is independent of the history of the external perturbation (Memory Loss Theorem). In the so called wide-band limit an analytic result for the time-dependent current is obtained. In the interacting case we propose an exact non-equilibrium Green function approach based on Time Dependent Density Functional Theory. The equations are no more difficult than an ordinary Mean Field treatment. We show how the scattering-state scheme by Lang follows from our formulation. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is obtained. As an example the time-dependent current response is calculated in the Random Phase Approximation.Comment: final version, 18 pages, 9 figure

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution

    Get PDF
    The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surface kinetics and bulk to surface diffusion, from which concentration distributions and fluxes are obtained directly. It was found that the (001) face showed strong mass transport (diffusion) controlled behavior with an average surface concentration close to the solubility value during growth and dissolution over a wide range of bulk saturation levels. The (1Ì…10) and (110) faces exhibited mixed mass transport/surface controlled behavior, but with a strong diffusive component. As crystals became relatively large, they tended to exhibit peculiar hollow structures in the end (001) face, observed by interferometry and optical microscopy. Such features have been reported in a number of crystals, but there has not been a satisfactory explanation for their origin. The mass transport simulations indicate that there is a large difference in flux across the crystal surface, with high values at the edge of the (001) face compared to the center, and this flux has to be redistributed across the (001) surface. As the crystal grows, the redistribution process evidently can not be maintained so that the edges grow at the expense of the center, ultimately creating high index internal structures. At later times, we postulate that these high energy faces, starved of material from solution, dissolve and the extra flux of salicylic acid causes the voids to close

    Phase Structures of Magnetic Impurity Models with Two-Body Hybridization

    Full text link
    The most general model with a magnetic impurity coupled to hybridizing and screening channels of a conduction band is considered. The partition function of the system is asymptotically equivalent to that of the multi-component kink plasma with a weak external field. The scaling properties of the models for finite UU are sketched by using the Anderson-Yuval-Hamann-Cardy poor man's scaling theory. We point out that it is proper to include a two-body hybridization in order to obtain correct renormalization flows. The phase structures are studied graphically for the general model and various reduced models. A Fermi-non-Fermi liquid phase transition is found for all the models. We also show all possible phases with different finite temperature behaviors though they have the same Fermi liquid fixed point at low temperature. We also discuss the fixed point behaviors in the mixed valence state regime.Comment: 18 pages, revtex, 3 figures in latex version, to be published in PR

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
    • …
    corecore