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Abstract

The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect
vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an
important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but
little is known about the influence of environmental factors on the transmission success. We present here evidence that the
composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito
infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with
a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-
taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly,
the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by
80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in
distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut
microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the
Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite
transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.
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Introduction

Understanding how Plasmodium-Anopheles interactions contribute

to the mosquito vector competence has received great attention

lately, and the increasing knowledge promises to contribute to the

development of new malaria control strategies [1–3]. Malaria still

remains a serious health problem in developing African countries,

causing more than 1 million deaths annually. Almost all these

deaths are caused by the parasite Plasmodium falciparum whose

major vector in Africa is Anopheles gambiae, which is widely

distributed throughout the afro-tropical belt. A. gambiae s.s. is

divided into two morphologically indistinguishable molecular

forms, known as M and S, which are regarded as incipient species

[4–6]. The M and S molecular forms exhibit ecological

preferences [7,8], but their respective epidemiological importance

in malaria transmission has been poorly documented so far [9,10].

The susceptibility of Anopheles mosquitoes to Plasmodium infection is

under genetic control [11–13], but the large variability in oocyst

number among closely related mosquitoes indicates that environmental

factors also play a role. Multiple lines of evidence suggest that mosquito

bacterial communities influence vector competence [14–17]. A

protective role of Anopheles midgut bacteria against malaria infections

was demonstrated by using antibiotic treatment to clear the gut

microbiota, which resulted in enhanced Plasmodium infections [15,18].

Consistently, coinfections of bacteria with Plasmodium reduced the

number of developing oocysts in the mosquito midgut, both in

laboratory and field conditions [15,19,20–24]. Interestingly, Cirimotich

et al. [24] recently described an Enterobacter bacterium isolated from wild

mosquitoes in Zambia that confers refractoriness to P. falciparum

infection. Mechanisms mediating this refractory phenotype remain

elusive. Instead of eliciting immune responses leading to reduced levels

of parasite burden, the experiments conducted by Cirimotich et al. [24]

revealed that the inhibition of Plasmodium development by commensal

microbiota occurs through production of reactive oxygen species by the

Enterobacter bacteria that directly target Plasmodium parasites in the

midgut [17,24].
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Bacterial diversity in the Anopheles species is thought to be

particularly low at the adult stage because of gut renewal during

metamorphosis from pupae to adults. Nevertheless several bacterial

species have been identified in the adult mosquito midgut using

different conventional culture-mediated techniques [16,23,24].

These bacteria were acquired from the aquatic environment during

immature stage development [25,26], although vertical transmis-

sion (from mother to offspring) also has been documented

[14,16,25,27]. Generally, knowledge on mosquito midgut bacterial

communities remains largely unknown, mostly because of the

limitations of isolating techniques based on culturing and to the low

resolution of fingerprint analysis. However, the recent deployment

of next generation DNA sequencing technologies has provided new

opportunities to explore microbial diversity of complex environ-

ments [28–31] as well as to further investigate disease susceptibilities

and host-bacteria-pathogen interactions [32–34].

In this study, we performed a meta-taxogenomic analysis of

microbial communities in the midguts of adult mosquitoes

originating from natural larval habitats in Cameroon. We further

investigated correlations between midgut microbiota and the

mosquito malaria infection status. Previous investigations of

bacteria-Plasmodium interactions in the mosquito vector have

considered laboratory-reared mosquitoes challenged with cultured

bacteria and infected with a cultured P. falciparum line. Here, we

challenged wild female mosquitoes with a natural isolate of

P. falciparum, thereby offering an opportunity to examine natural

bacteria/parasite associations. Our analysis revealed that the

midgut bacterial diversity represents an important force shaping

the mosquito vector competence, where bacteria of the Enterobac-

teriaceae genera benefit P. falciparum development.

Results

Mosquito susceptibility to P. falciparum and bacterial
flora

A total of 92 A. gambiae mosquitoes collected at the larval stage

and reared to adults in the insectary were successfully fed through

membrane feeders on gametocyte containing blood from a single

individual. The origin of mosquitoes and their genetic character-

istics (molecular form and infection status) are summarized in

Table S1. Mosquitoes of M molecular form were significantly

more infected than those of S form (48.5% versus 27.1%; OR

0.39; 95% CI: 0.15–1.06; P = 0.044). However, the comparison of

infection prevalence (number of infected mosquitoes) between the

different localities revealed a ‘‘sampling site effect’’ (Fisher’s exact

test P,0.01).

Of those challenged with P. falciparum we then investigated the

gut microbiota in mosquitoes originating from two different

breeding sites. We used field mosquitoes from Mvan and

Nkolondom and gut bacterial communities determined for 8

P. falciparum-PCR positive and 7 negative mosquitoes from each

locality (Table S2).

Composition of microbial communities in mosquito
midguts

Pyrosequencing of 16S rDNA generated a total number of

663,798 sequence reads across the 3 hypervariable regions S1, S2,

and S3 in the bacterial gene in 32 mosquitoes (Table 1). Few

individuals failed to amplify the SSU regions (2 for S1, 3 for S2,

and 5 for S3), which was not linked to DNA quality as at least one

region was successful for all samples, making it likely that technical

problems in the PCR were responsible. After tag extraction and

filtering of low-quality sequence tags, we obtained 575,284 reads

for the analysis, representing 86.7% of the 454 reads. The average

number of tags for all SSU regions combined per sample was

6,827 (6811), read number per gut ranging from 3,305 to 10,169.

About 99.0% of sequence reads were successfully assigned, with

unique tags representing 25.4% of the average tag number over

the three SSU regions.

We first compared the pyrosequencing data for the 23 gut

samples that yielded sequence tags for all three 16S domains

(Table 1). The comparison of the microbial communities between

the 3 domains for seven midgut samples is given in Figure 1. The

three 16S domains overall provided a very similar picture of the

bacterial populations, even if they differed for the exact

percentages. When only the most abundant taxonomic categories

were considered (constituting .2% of the overall), the S1 domain

reaches a lower percentage, indicating that this 16S library

capable of identifying a greater number of minor clades (Figure 1).

In addition, the S1 domain had better resolution, allowing more

precise assigning of sequence tags (see Figure 1, mosquito

NKD97). We then performed further analyses on the S1 domain,

for all 30 samples that were successful for pyrosequencing.

The bacterial communities of the mosquito midgut belonged to

26 different phyla, among which, 5 represented more than 99% of

the total microbiota: Proteobacteria, Bacteroidetes, Actinobacteria,

Firmicutes, and Fusobacteria. We examined the relative abundance

of the major classes, that is, detected in more than 30% of the

samples and having an average abundance of .0.1% (Figure 2).

The gut microbiota presented a large inter-individual variability

and was dominated by few taxa. The first striking result came from

laboratory-reared mosquitoes that exhibited a drastically different

composition of midgut bacteria from field mosquitoes. More than

96% of tags corresponding to bacteria in the midguts of

mosquitoes from the Ngousso colony were assigned to Flavobacteria,

although this class accounted for only 0.38% (60.24) of the

sequence tags in field mosquitoes. Similarity searches against the

SSU SILVA database (release 108) identified Flavobacteria tags as

belonging to Elizabethkingia sp., which already has been isolated

from A. gambiae midguts from different insectaries [15,35,36]. The

Author Summary

During their development in the mosquito vector,
Plasmodium parasites undergo complex developmental
steps and incur severe bottlenecks. The largest parasite
losses occur in the mosquito midgut where robust
immune responses are activated. Variability in P. falci-
parum infection levels indicates that parasite transmission
is the result of complex interactions between vectors and
parasites, which rely on both genetic and environmental
factors. However, in contrast to genetically encoded
factors, the role of environmental factors in parasite
transmission has received little attention. In this study,
we characterized the midgut microbiota of mosquitoes
derived from diverse breeding sites using pyrosequencing.
We show that the composition of the midgut microbiota in
adult mosquitoes exhibits great variability, which is likely
determined by bacterial richness of the larval habitats.
When field mosquitoes were collected at late immature
stages in natural breeding sites and the emerging females
challenged with Plasmodium falciparum in the laboratory,
significant correlation was observed between P. falciparum
infection and the presence of Enterobacteriaceae in the
mosquito midgut. Greater understanding of these malaria-
bacteria interactions may lead to novel malaria control
strategies.
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guts of Ngousso mosquitoes also contained, to a lower extent,

Gammaproteobacteria (Pseudomonas sp.) and Alphaproteobacteria (Asaia sp.).

In mosquitoes from natural habitats, midguts were mainly

colonized by Proteobacteria (94%), and the most prominent classes

were Gammaproteobacteria, Alphaproteobacteria and Betaproteobacteria

(Figure 2). Figure 1 clearly shows the difference in bacterial

composition between mosquitoes from the 2 breeding sites used in

this study. In mosquitoes originating from Nkolondom, the

intestinal bacterial flora is dominated by Alphaproteobacteria

(68.6567.38%), mainly of the genus Asaia sp. By contrast, the

three major classes are almost equally represented in the midgut of

mosquitoes from Mvan, although with large individual variability.

The main taxa in this locality were Asaia, Sphingomonas, Burkholderia,

Ralstonia, and Enterobacteriaceae. Enterobacteriaceae could not be

assigned to more precise taxonomic ranks.

Midgut bacteria were unevenly distributed among individual

mosquitoes and between the different sampled localities. Several

genera were found in all, or at least in a large majority, of the

mosquitoes possibly representing the ‘‘mosquito midgut core

microbiota’’ (Table S3). They included members of the genera

Asaia, Burkholderia, Serratia, Ralstonia, Acinetobacter, Pseudomonas,

Sphingomonas, Staphylococcus, Streptococcus, and Escherichia/Shigella. Of

note, Asaia sp. was found in all samples, and its relative abundance

showed great variation from one midgut to another, ranging from

1.49 to 98.95% in mosquitoes from Nkolondom and from 0.04 to

49.66% in those from Mvan. The group of unassigned Enterobac-

teriaceae also was identified in all field samples, with relative

abundance ranging from 0.01 to 1.03% and from 0.04 to 71.51%

in Nkolondom and Mvan, respectively. Other specific members of

Enterobacteriaceae were frequent and represent a large proportion of

the midgut bacterial communities: Serratia spp. accounted for

96.93% of the midgut bacteria in a mosquito (NKD97) from

Nkolondom, and Cedecea spp. encompassed 12% of the gut bacterial

content in 2 mosquitoes from Mvan. Escherichia/Shigella was found in

more than 85% of the mosquitoes, at low densities. The sequence of

the Esp_Z Enterobacter (JF690924), despite its presence in our

reference database, was absent from the analyzed reads.

Of note, the midgut bacterial flora was mainly composed of

Gram-negative communities. No Gram-positive bacterium was

identified in the laboratory mosquitoes, whereas they represented

5% of the total microbiota of the field mosquitoes. Gram-positive

bacteria belonged to the classes Bacilli and Actinobacteria.

To determine whether all phylotypes present in the mosquito

midgut microbiota were detected in this study, we performed a

rarefaction analysis for each sample on tags from the S1 domain;

rarefaction curves are shown in Figure S1. The rarefaction curves

decrease rapidly at approximately 2,000 sequences per sample and

reach saturation at 3,000, indicating that our sequencing effort was

sufficient to catch the overall bacterial diversity in the mosquito

midgut. The rarefaction curves show the large variability in

bacterial complexity among samples, varying from 13 to 340

operational taxonomic units (OTUs). In addition, they illustrate

the paucity of clusters in the midgut of laboratory mosquitoes.

They also revealed greater bacterial diversity in the samples from

Mvan compared with those from Nkolondom (185651 and

110630, respectively; t-test t = 2.385, P = 0.025).

Microbial diversity in the mosquito intestinal microbiota
The Chao1 estimator, which gauges the number of unseen

‘‘species,’’ predicted that we covered, on average, 81% of the

species diversity across all samples. To confirm this result, we

computed the ACE and Jackknife estimator indexes; both had

higher values than the observed richness, indicating an underes-

timation of the gut microbial diversity (see Table S2).

We characterized the species diversity in our set of mosquito

midguts using the species richness, the Shannon diversity index (H)

and the Simpson’s diversity index (D); data are shown in Table S2.

No significant differences in the richness index were found

comparing mosquito locality and/or P. falciparum prevalence.

Significant differences of the diversity indexes were found when

comparing mosquito locality (Shannon, P = 0.0091 and Simpson,

P = 0.0097) but none when comparing the infection prevalence of

mosquitoes. Thus, at the genus level, the microbiota of mosquitoes

from Mvan was more diverse than that from Nkolondom, but

Plasmodium-infected and non-infected mosquitoes did not exhibit

differences in their microbial diversity.

The relationship between the class taxonomic rank of bacteria

and the origin of the mosquitoes (locality) was evaluated using

redundancy analyses (RDA) (Figure 3). The Eigen values of the

first four axes were recorded at 0.304, 0.214, 0.331, and 0.144,

respectively. The first two constrained axes explained around 50%

of the total variance in the bacterial community and 100% of the

species-environment relationship. The unrestricted Monte Carlo

permutation test (n = 499) indicated that all environmental

variables were significant (Nkolondom variable: F = 10.99,

P = 0.002; Mvan: F = 13.26, P = 0.004; Mvan and laboratory

variables fit collinearly). Thus the different classes of bacteria were

not randomly distributed but linked to the breeding site where

mosquitoes grew up. As seen in Figure 2, Flavobacteria were related

to laboratory mosquitoes, whereas Alphaproteobacteria were less

diverse and related to the Nkolondom locality. The remaining

classes cluster along the Mvan locality. These results confirm the

higher diversity of bacterial taxa in mosquitoes collected in Mvan

as compared with Nkolondom, and the paucity of the gut

Table 1. Summary of pyrosequencing tags for the 3 amplified SSU rDNA regions.

SSU rDNA region

S1 S2 S3

Total 454-reads 229,540 215,046 219,192

Dereplicated tags 206,592 167,440 201,252

Average tags per sample (SD) 6,886 (+/21,601) 6,201 (+/21,589) 7,454 (+/21,559)

Assigned tags (%) 99,8 99,9 97,5

Unique tags (%) 24,5 28,2 23,7

Phylum number 26 17 15

OTUs at the family rank 140 116 96

doi:10.1371/journal.ppat.1002742.t001
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Figure 1. Comparison of bacterial diversity for the three 16S libraries at the genus level. Tag abundance was compared for three 16S
libraries, and the graph shows the bacterial flora of six mosquito midguts. The three 16S libraries were obtained using primer sets targeting different
16S domains, as described in the Materials and Methods section. Only the most abundant categories (.2%) were considered. The S1 library only
reached 95%, showing this domain allowed identifications for a greater number of minor clades. For mosquito NKD97, S2 and S3 primer sets only
allowed the identification at the Enterobacteriaceae family level, whereas S1 reached the assignment at the genus level, Serratia.
doi:10.1371/journal.ppat.1002742.g001
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microbiota in laboratory-reared mosquitoes as compared with

mosquitoes from the wild.

Relationship between gut microbial communities and P.
falciparum prevalence

We then investigated potential relationships between the gut

microbial communities of field mosquitoes and the P. falciparum

infection status. We performed the RDA by plotting the infection

status and the origin of the field mosquitoes against the family

taxonomic rank, allowing the analysis of more precise bacterial

taxa (Figure S2). The first and second constrained axes

corresponded to 35% and 7% of the total variance in the bacterial

community, respectively, and explained all the cumulative

percentage variance of the family-environment relationship. All

Figure 2. Relative abundance of the different bacterial classes within each mosquito midgut sample. Mvan and NKD (Nkolondon)
indicate the geographical origin of mosquitoes, NG being mosquitoes of the laboratory colony Ngousso. Pf+ and Pf2 designate the P. falciparum
infection status of the challenged mosquitoes, positive and negative, respectively. Only class rank groups that represented .1% of the total reads,
and identified in at least 30% of mosquitoes, are shown. ‘‘Unclass’’ represents tags that could not be assigned to the class level, and were grouped
into a higher taxonomical rank.
doi:10.1371/journal.ppat.1002742.g002

Figure 3. Redundancy analysis for gut bacterial communities (taxonomic rank = class) in field and laboratory mosquitoes. The length
of arrows indicates the strength of correlation between the variable and the ordination scores. Blue arrow: bacterial classes, green arrow:
environmental variables. The Monte Carlo permutation test was used to test the statistical significance of the relationship between environmental
variables and the bacterial classes. The ‘‘Flavo’’ (Flavobacteriaceae) segregates with ‘‘labo’’ environmental variable, ‘‘Alpha’’ (Alphabacteriaceae) with
the ‘‘NKD’’ environmental variable (P,0.05). All other bacterial classes segregate along the second axis, with the ‘‘Mvan’’ environmental variable.
doi:10.1371/journal.ppat.1002742.g003
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environmental variables were significant (Monte Carlo test,

Nkolondom: F = 14.02, P = 0.002; collinearity detected with Mvan

variables; infection variable F = 3.00, P = 0.042). The first axis

alone explained 84.1% of the variance of the family environment

relationship and was related to the mosquito origin (Mvan and

Nkolondom). In concordance with the results already described for

the Alphaproteobacteria class, the Acetobacteriaceae family was related to

mosquitoes from Nkolondom, and most of the family is

represented by Asaia spp. By contrast, the mosquitoes from Mvan

exhibited a larger bacterial diversity. Interestingly, the RDA

revealed a relationship between the Enterobacteriaceae family and the

infection status along axis 2 (Figure S2). This result suggests that

mosquitoes harboring Enterobacteriacae are more likely to be infected

by P. falciparum. A correlation between the relative abundance of

Enterobacteriaceae in the midgut and P. falciparum infection was

further detected using the non-parametric Mann-Whitney test

(P = 0.004; Figure 4), indicating that P. falciparum-positive mosqui-

toes were hosting more Enterobacteriaceae bacteria.

Discussion

We provide here an in-depth description of the microbial

communities in the midgut of the malaria mosquito. Using

pyrosequencing, we explored individual midgut samples from

adult female mosquitoes collected at the larval stage in different

natural environments, exposed to P. falciparum infection at day 5

after emergence and dissected 8 days after the infectious blood

meal. We then examined the microbial diversity according to the

origin of the mosquitoes and investigated putative correlations

between the bacterial content and the malaria infection status by

comparing midgut microbiota in P. falciparum-positive and P.

falciparum-negative individuals.

The adult mosquito midgut microbiota comprises five dominant

phyla Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, and

Firmicutes and presents some similarities with gut microbial

communities from other invertebrate midguts, including mosqui-

toes [37–44]. Nonetheless, pyrosequencing revealed a higher

diversity than more conventional molecular techniques, with an

average of 147.64 OTUs (688.49, at a 0.04% occurrence

threshold) and an estimated richness of 72.27 (631.70) taxa per

field mosquito. Although bacterial richness is greater than

previously described in mosquitoes, the vast majority of sequence

tags (.90%) felt into few taxa and only 21 bacterial families, and

28 genera had an abundance of .1% in at least one mosquito

midgut. Thus, the mosquito midgut is colonized by few dominant

bacteria species, probably involved in metabolic functions.

We used three different pairs of primers (S1, S2, and S3) to

amplify and analyze each midgut sample. The comparison of the

bacterial diversity for the three libraries revealed similar patterns;

however, the S1 library allowed more detailed identification of the

mosquito microbiota. These data strengthen the previous obser-

vation that the SSU rRNA gene clone libraries are biased by the

choice of the set of primers used for amplification and thereby

distort the revealed biodiversity [45]. To our knowledge, this is the

first 454 sequencing analysis where different couples of primers

have been used to identify the bacterial diversity in biological

samples. The analysis ensured that the primer sets used produced

the most accurate view possible of the bacterial content of the

mosquito midgut.

Proteobacteria represented more than 90% of the bacterial gut

content in the mosquitoes from the wild, whereas in laboratory-

reared mosquitoes, more than 95% of sequence tags belonged to

the Flavobacteria Elizabethkingia spp. The remaining tags from

laboratory mosquitoes were assigned to the members of Gamma-

proteobacteria (Acinetobacter, Pseudomonas), Firmicutes (Staphylococcus,

Streptococcus), and the Alphaproteobacterium Asaia sp. Bacterial richness

and diversity seem to be particularly poor in the laboratory

mosquitoes. We identified the Elizabethkingia spp. in 68% (19/28) of

the field-collected mosquitoes, at low densities (,0.5% of the total

bacterial content), suggesting either that the bacterium has

developed symbiotic associations with the mosquito midgut or

that the bacterium is widespread in nature. The predominance of

Elizabethkingia spp. in the midguts of the insectary-reared mosqui-

toes reflects that the bacterium has found a thriving niche in this

environment where competition with other bacterial species is

limited. Bacteroidetes are known as glucose degraders, and the large

dominance of Elizabethkingia spp. in laboratory-reared mosquitoes is

probably due to the mosquito food source [46]. Indeed, the midgut

Figure 4. Relative abundance of Enterobacteriaceae in P. falciparum non-infected (Pf2) or P. falciparum infected (Pf+) mosquitoes. The
Enterobacteriaceae loads are significantly higher in P. falciparum infected mosquitoes (P = 0.004; Mann–Whitney test). The boxes represent the
interquartile range (25–75th percentile), and the line within each box corresponds to the median value.
doi:10.1371/journal.ppat.1002742.g004
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microbial diversity is directly associated with the individual diet

[47–50]. In this study, all adult mosquitoes were maintained in our

standard rearing conditions on a sterile glucose solution. The

aquatic environment of the larval stages presented striking

differences: larvae of the Ngousso strain were grown in clean

spring water, whereas the immature stages of field mosquitoes

were collected in natural breeding sites, water puddles, and

flooded areas rich in biotic and abiotic components. Thus, our

results indicate that the environmental conditions of the vectors

are key determinants in shaping midgut microbiota. The drastic

loss of microbial diversity from the wild to laboratory conditions

may have important consequences on mosquito fitness and on the

gut immune system. This undoubtedly explains the higher

prevalence and intensity of P. falciparum infections in laboratory

colonies of A. gambiae as compared with field-derived mosquitoes

and pinpoints the limitations of using laboratory models to study

host-pathogens interactions (Morlais and Cohuet, unpublished).

The great difference in the composition of gut bacteria between

laboratory and field-collected mosquitoes as well as between

mosquitoes originating from distinct breeding sites shows that most

bacteria are commensally acquired from the environment. Field

mosquitoes were sampled in their breeding sites at the larval stage

and maintained in their aquatic habitats until adult emergence.

We propose that the acquisition of endobacteria occurred from the

aquatic environment, and possibly by vertical transmission routes.

Indeed transstadial transmission has been demonstrated in

Anopheles mosquitoes [27,51], and despite of ‘‘gut sterilization’’

during mosquito metamorphosis from pupae to adult, which is

believed to contribute to a reduction of the larval microbiota [52],

the bacterial clearance is not complete. Here, we show that the

bacterial content of adult mosquitoes differed according to the

breeding site where larvae were grown, and our results suggest that

the composition of the midgut microbiota in adult mosquitoes

relies on the bacterial richness of the native aquatic source.

The 454 sequencing allowed the identification of both

commensal and symbiotic bacteria, giving a broad description of

the mosquito midgut microbial community. Bacterial taxa, such as

Asaia or Burkholderia, are known insect symbionts, contributing to

beneficial associations and possibly to an enhanced pathogen

resistance [35,53–55]. We identified Asaia spp. as a predominant

component of the gut microbiota in the mosquitoes from

Nkolondom, representing more than 60% of sequence tags, but

these bacteria also were found at lower abundance in all other

mosquitoes even in those from the laboratory colony, which is

indicative of a positive effect of this bacteria on mosquito fitness.

Transmission of Asaia from adult to offspring occurs through an

egg-mediated mechanism, but other modes of transmission,

including contamination through the food source, have been

described [35,51,56]. Several strains of Asaia colonize mosquito

populations, including symbiotic and environmental isolates that

follow distinct routes of transmission [35]. The difference of Asaia

abundance in mosquitoes sampled in our two study sites,

Nkolondom and Mvan, possibly underlies a genetic heterogeneity

of the bacterium in the different environmental settings. By

contrast to Asaia, Burkholderia spp. that were the dominant genera of

the midgut microbiota in mosquitoes from Mvan, representing an

average of 30% of sequence abundance, were not detected in the

intestinal flora of the Ngousso colony. Thus, the infection by

Burkholderia is not essential for growth and reproduction of the

mosquito. Members of the genus Burkholderia are widespread in soil

rhizospheres and plant surfaces, and some species are known to be

associated with insects feeding on plants [41,54,57,58]. In the

latter case, the Burkholderia symbiont is environmentally acquired

by the nymphs [54]. Studies on the association between

Burkholderia and the insect midgut revealed mutualistic relation-

ships, where the symbiont presence increases the insect fitness or

protects the insect from entomopathogenic fungi [54,55]. So far, as

we know, the effect of the Burkholderia symbiont on malaria vectors

is unknown. Further investigations on the microbiota dynamics

through the mosquito life cycle, from egg to adult, are required to

better define the nature of the microbe-insect associations and the

most important microbial species critical for mosquito survival.

Despite a larger diversity of the gut microbiota in wild mosquitoes,

most bacteria species are sparsely distributed between individual

mosquitoes. Only 20 genera were found in more than 80% of

individuals and 60 in .50%. In insects, the gut microbiota differs

according to the food source, and in blood-sucking insects, bacterial

content is higher after a blood meal [15,23,59,60]. Here, because adult

mosquitoes were fed the same diet, the high variability of taxa

abundance results from individual variation, and the most abundant

lineages represent the mosquito ‘‘core gut microbiota.’’ The existence

of a core gut microbiota, by which different bacteria species are sharing

metabolic functions and maintain the gut homeostasis, is now emerging

[34,61,62]. Because alteration of the microbiota composition has been

related to the development of diseases or health disorders, the next

challenge is to define members of the microbial community and/or the

metabolic interdependencies essential to preserve optimal gut homeo-

stasis [34,63].

The characterization of the mosquito core microbiota during the

time course of Plasmodium infection will be a next step toward

understanding the impact of gut bacteria on parasite development

within the mosquito midgut. P. falciparum traverses the intestinal

epithelium within 24 h after blood meal, at the peak of the digestion

process; and whether parasites take advantage of intense competitive

interactions for nutrient resources between bacteria to thwart the

immune surveillance has to be investigated. Indeed, the gut microbiota

is known to play an important role in protecting the host from

potentially pathogenic microbes [64,65]. Protection occurs through

different processes: stimulation of the mosquito immune response,

competition for binding sites or nutrients and production of toxins [65–

67]. However, despite the beneficial role of the microbiota, pathogens,

such as helminthes and viruses have developed strategies for exploiting

the gut microbiota to promote their transmission [68,69,70]. For the

mosquito vector, our understanding is still at an early stage for how the

natural resident microbial flora of the mosquito midgut contributes to

its resistance to the Plasmodium [15,17,18,24].

In this study, we found that the abundance of Enterobacteriaceae is

higher in P. falciparum-infected mosquitoes, suggesting that some

microbe-parasite interactions may contribute to the successful

development of the malaria parasite. However, whether Entero-

bacteriaceae have an effect on parasite survival or whether the

increased level of Enterobacteriaceae is a consequence of Plasmodium

development remains elusive. Alternatively, genetic factors, such

as allelic polymorphism of immune genes, could regulate the

variable levels of permissiveness of the mosquitoes as has been

previously shown [71]. In contrast to our findings, previous studies

reported the deleterious effect of bacterial infections on Plasmodium

development in the mosquito [19,23–25]. Of interest in this

context, several Enterobacteriaceae strains were able to inhibit the

development of Plasmodium species in the mosquito midgut, among

them Cedecea spp., Serratia spp., and Enterobacter spp. isolated from A.

albimanus, A. stephensi, or A. arabiensis [19,22–24]. The Esp_Z

Enterobacter strain isolated from A. arabiensis caught in Zambia [24]

was not identified in any of the reads we analyzed. The possibility

that this Enterobacter strain would have been absent from the PCR

products because of competition with a different clade is unlikely

as we used three different sets of primers. Therefore, we expect

that in the gut of A. gambiae mosquitoes in Cameroon, the Esp_Z
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Enterobacter strain was below the 0.1% abundance threshold or absent.

This Enterobacter strain was isolated in Zambia from wild-caught A.

arabiensis mosquitoes, and differences in the mosquito species, as well as

differences between the study areas, may explain why we did not find

this bacterium in our material. Cirimotich et al. [24] recovered the

Esp_Z on LB media, and culturing methods can lead to the artificial

amplification of a bacterial strain present in minute amounts in an

environmental sample. Therefore, it would be of interest to examine

the presence/abundance of Esp_Z in wild-caught Zambian A. arabiensis

using the methodologies described here. In our study, we analyzed the

gut resident microbiota and revealed a positive correlation between

commensal Enterobacteriaceae and Plasmodium infection, indicating that

the P. falciparum infection phenotype under natural conditions results

from more complex interactions than previously thought. Our data

suggest a possible protective role of the Enterobacteriaceae on natural P.

falciparum infection. Interestingly, it has been shown that commensal

Enterobacteriaceae may promote intestinal homeostasis by enhancing

immune receptors in the human colon [72]. For the mosquito, as

described for the insect model Drosophila [73], gut homeostasis could be

maintained through the renewal of the intestinal epithelial layer that

can be altered upon bacterial killing or through immune regulation. A

major challenge now will be to correlate our data with quantitative

phenotyping of the immune system of the gut.

Previous reports on the susceptibility of the M and S molecular

forms to P. falciparum infections relay contrasting findings [9,10]. In

Cameroon, mosquitoes of the two molecular forms collected in a

sympatric area exhibited similar susceptibility to P. falciparum

infection [10], whereas in Senegal, mosquitoes of the S form,

derived from progenies of field-collected individuals, were more

susceptible to P. falciparum than those of the M form [9]. In the

present study with the mosquitoes collected in natural breeding

sites and infected on the same blood donor, we found that the M

form was more infected than the S form. However, a marked

difference in the P. falciparum prevalence was observed according to

the sampling site, and larger sample sizes of sympatric M and S

populations of A. gambiae will be needed to further explore any

difference of Plasmodium susceptibility between the two cryptic

species. We propose that the composition of the gut microbiota

may influence parasite transmission, which would explain the

difference in infection levels between mosquito populations from

diverse environments [9,74].

The mosquito susceptibility to Plasmodium infection is under host

genetic control, and several candidate genes have a recognized

role in the establishment of the pathogen in the mosquito midgut

[11–13]. However, how the mosquito gut microbiota influences

Plasmodium transmission has to be unraveled. The mosquito gut

ecosystem remains poorly understood, and elucidating the precise

role of the symbiotic and commensal flora on the regulation of the

insect immune response and on the infection course of pathogens,

such as Plasmodium parasites, will be of great interest. Pathogens

and microbes likely depend on similar mechanisms for interacting

with their hosts, and a better knowledge of the mosquito-

microbiota interactions would open new avenues for vector

disease control through manipulation of gut microbial communi-

ties. Furthermore, unraveling these strategies mounted by the

parasites to cooperate with the resident microbiota will allow a

better understanding of co-evolution of host-pathogen interactions.

Materials and Methods

Ethics statement
All procedures involving human subjects used in this study were

approved by the Cameroonian national ethical committee

(statement 099/CNE/SE/09). The gametocyte carrier used in

this study was enrolled as a volunteer after his parents had signed a

written informed consent.

Mosquito collection and sample characterization
A. gambiae mosquitoes were sampled in aquatic habitats at the L4

and pupae stages in four localities in Cameroon using standard

dipping technique [75]. In each locality, breeding sites were

inspected visually for presence of larval stages. At each breeding

site, 10 dips were taken with a standard dipper (300 ml) and kept

in a 5-liter container for transportation to the insectary at

OCEAC. Anopheline larvae were identified morphologically;

non-anopheline larvae and predators were removed. Larvae were

kept in their original habitat water in a 3-liter plastic bucket and

resulting pupae were collected daily for 2 days. Pupae were

transferred to a plastic cup containing 20 ml of water from the

breeding site, and the cup was placed in a 30630 cm cage for

emergence. The remaining larval collection was discarded after 2

days to avoid bias because of putative modifications of the biotic

content of the aquatic habitats. Adult mosquitoes were maintained

in standard insectary conditions (2762uC, 8565% RH, and 12 h

light/dark) and provided with 8% sterile sucrose solution.

Female mosquitoes were fed on a single P. falciparum gametocyte

carrier to avoid infection rate variability because of the blood donor.

Infectious feeding was performed as previously described [71,76].

Females, 3 to 5 days old, were starved for 24 h and allowed to feed

on the P. falciparum gametocyte containing blood for 35 minutes

through membrane feeders. Unfed and partially fed mosquitoes

were removed by aspiration and discarded. Fully engorged females

were kept in the insectary until dissections 8 days after the infectious

blood meal. Mosquitoes were surface sterilized in 70% ethanol for

5 minutes, then rinsed twice in sterile PBS solution, and midguts

were dissected and stored individually at 220uC until processing.

DNA was extracted using the DNeasy Blood &Tissue Kit from

Qiagen (Valencia, CA) and quantified (Nanodrop ND-1000,

NanoDrop Technologies, Montchanin, DE, USA).

A 20-ng aliquot of DNAs was subjected to whole-genome

amplification using the GenomiPhi V2 DNA Amplification Kit

(GE HealthCare, Uppsala, Sweden), and the GenomiPhi tem-

plates served to characterize molecular forms of A. gambiae and the

P. falciparum infection status. Molecular forms were determined

according to Fanello et al. [77] and the identification of mosquitoes

that successfully developed malaria infection using a P. falciparum

specific PCR amplifying a Cox gene fragment [78].

Sample selection for the metagenomic analysis
A total of 32 individual midguts were subjected to the 454-

sequencing analysis. We included 2 samples of midguts dissected

from mosquitoes of our local colony of A. gambiae, Ngousso. The

Ngousso colony was established in January 2006 from larvae

collected in breeding sites of an urbanized district of Yaounde,

‘‘Ngousso.’’ Larval collections were conducted during a 2-month

period; mosquitoes were blood fed for oviposition and then PCR

screened for molecular form of A. gambiae. Ngousso mosquitoes

belong to the M molecular and Forest chromosomal forms. Since

then, the colony has been routinely maintained at the OCEAC

insectary. The Ngousso samples served to provide an overview of

the bacterial content of laboratory mosquitoes reared under

standard insectary conditions and as an experimental control in

this study. The 30 remaining samples were chosen among field

mosquitoes fed on blood from the same gametocyte carrier. We

selected both P. falciparum positive and P. falciparum negative

midguts to assess putative differences of microbiota between

non-infected and infected individuals in our P. falciparum-

challenged mosquitoes.
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454 sequencing
For each individual midgut DNA sample, we generated three PCR

amplicon libraries. We targeted 3 different hypervariable regions of the

16S ribosomal RNA to allow accurate detection of the bacterial

communities in each sample. Indeed, previous analyses showed that

the set of primers used for amplification can have a strong impact on

the biodiversity revealed; some abundant clades in a given sample

could be foreseen, depending on the primers used [45]. The S1 library

targeting the V4 hypervariable region was obtained using the forward

primer 535F (59-GTGCCAGCAGCCGCGGTAATA-39) and the

reverse primer 789R (59-GCGTGGACTACCAGGGTATCT-39),

the S2 library for the V5–6 region using the 326F (59-CAAACAG-

GATTAGATACCCTG-39) and the 1082R (59-CGTTRCGGGAC-

TTAACCCAACA-39) primers, and the S3 library targeting the V5–6

region with the 1065F (59-CAGGTGCTGCATGGCYGTCGT-39)

and the 1336R (59-CGATTACTAGCGATTCC-39) primers. Ampli-

fied DNA was purified and quantified using Picogreen fluorescent dye

(Molecular Probes, Eurogen, OR). Individual libraries were processed

for 454 sequencing by ligating the 454 adapters coupled to MID tags,

allowing the multiplexing of samples. The amplicon libraries were

pooled in two separate batches and sequenced. The MIDs and 454

linkers were ligated after the PCR amplification and the pyrotags were

sequenced unidirectionally. Pyrosequencing was performed at Gen-

oscreen (Lille, France) using a Genome Sequencer FLX Titanium (GS-

FLX) system (Roche, Basel, Switzerland). In total, we recovered

663,651 sequence reads (tags) that were subjected to quality controls.

All 454 sequences were deposited in Genebank (SRS281724.1 and

SRS281725.1).

Data processing and taxonomic assignment
Tags were extracted only if they contained the combination

linker-MID-primer and the complement primer sequence at the

39end. Tags were sorted in appropriate files according to their

MID barcode and converted to the forward strand when

necessary. A strict dereplication step was then applied that

discarded tags with unidentified nucleotides (Ns) and those longer

than 350 bp or shorter than 200 bp. Dereplicated tags were sorted

by decreasing number of occurrences and clustered at k = 3

number of differences as described in Stoeck et al. [79]; this

pipeline resulted in determining unique sequences. We next

processed taxonomic assignments by implementing a new

approach that clearly optimizes the successive assignments. We

first extracted from the reference sequences of SILVA (release 106)

domains corresponding to the various possible couples of the

primers. Extraction was first performed requiring a perfect match

between each primer and a sequence and, when no match was

found, 1, 2 and 3 differences between each primer and a sequence

were used successively. This pipeline then gave three reference

databases, one per amplified 16S rDNA region, containing all

reference amplicons putatively matching our tags. The S1, S2 and

S3 tagged databases contained 424.634, 359.198 and 394.370

reference amplicons, respectively.

In a second step, all unique tags were assigned a taxon using a

global alignment method. Each amplicon of the reference

database was considered if it had at least 70% similarity with a

tag. The list of reference amplicons was sorted by decreasing

percentage of similarity and rounded to an integer. For taxonomic

assignments, the reference sequence with the highest percentage

was used, and taxonomy to a given level was obtained by the

consensus of these taxonomies when more than one result

emerged. For example, a tag with 98% similarity to the class

Gammaproteobacteria and Alphaproteobacteria was only assigned to the

phylum Proteobacteria. When similarity was ,80%, sequences were

not assigned. Tags were clustered into OTUs according to their

consensus taxonomy. For each mosquito sample and each

amplified 16S rDNA region, OTU abundances represent relative

abundances, the number of reads for the given OTU divided by

the total of tags in the SSU region of that sample.

Rarefaction curves were produced by plotting the number of

unique sequence tags as a function of the number of randomly

sampled tags. To generate rarefaction curves, we retained OTUs

containing at least 2 sequence tags and encompassing the abundance

threshold of 0.04% because rare sequences likely represent random

sequencing errors and overestimate the overall diversity.

Ecological indexes and statistical analysis
Ecological indexes such as richness and diversity indexes

(Simpson, Shannon), were computed using the Vegan [80] and

BiodiversityR [81] packages under the R software (available at

http://www.R-project.org) [82]. Chao1, ACE1 and Jackknife

richness estimators were calculated using the SPADE software

[83]. Indexes were calculated using values from the genus

taxonomic rank, the lowest rank obtained with the 454 technology.

Association between microbiota and environmental variables was

assessed using a multivariate ordination test. We defined the different

taxa present in the data set as ‘‘species variables’’ and the origin of the

mosquitoes and the P. falciparum infection status as ‘‘environmental

variables’’ for each individual. A detrended canonical correspon-

dence analysis (DCA) was performed to determine the ordination

method suitable for our data. The longest gradient we obtained was

shorter than 3.0, indicating that the constrained form of linear

ordination method, the RDA, was the most appropriate test [84].

Redundancy analysis was performed using Canoco v. 4.5 Software

[85]. The environmental variables were set as dummy variables (0 or

1 values). RDA and associated Monte Carlo permutation tests

(n = 499) were used to identify the measured environmental variable

that contributed most significantly to the variation in the bacterial

community data. The Monte Carlo test returns a p value associated

with the effect of the environmental variable on the microbiota

composition of the samples. Results were visualized on a biplot

ordination diagram using CanoDraw extension.

Supporting Information

Figure S1 Rarefaction analyses for each mosquito
midgut sample. Saturation curves were generated by plotting

the number of unique sequence tags as a function of the number of

randomly sampled tags. Tags were clustered at k = 3 differences,

and OTUs were set when containing at least 2 sequence tags and

encompassing the abundance threshold of 0.04%.

(TIF)

Figure S2 Redundancy analysis for gut bacterial com-
munities (taxonomic rank = family) in field mosquitoes.
The length of arrows indicates the strength of correlation between

the variable and the ordination scores. Blue arrow: bacterial

classes, green arrow: environmental variables. The Monte Carlo

permutation test was used to test the statistical significance of the

relationship between environmental variables and the bacterial

classes. ‘‘Family’’ and ‘‘Locality’’ variables segregate along the first

axis, but ‘‘Entero’’ (Enterobacteriaceae) and ‘‘Infection’’ gathers along

the second axis (P,0.05).

(TIF)

Table S1 Molecular form identification and infection
status of female A. gambiae mosquitoes collected at
larval stage in different localities and challenged after
emergence to a single P. falciparum donor.

(DOC)
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Table S2 Mosquito characteristics and diversity index-
es for each individual analyzed upon 454 sequencing of
the S1 library.
(DOC)

Table S3 Main genera that composed the natural A.
gambiae gut microbiota.
(DOC)
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