217 research outputs found

    Silica-based monolithic sensing plates for waveguide-mode sensors

    Get PDF
    We developed a monolithic sensing plate for a waveguide-mode sensor. The plate consists of a SiO2 glass substrate and a thin silicon layer the surface of which is thermally oxidized to form a SiO2 glass waveguide. We confirmed that the sensing plate is suitable for high-sensitivity detection of molecular adsorption at the waveguide surface. In addition, a significant enhancement of the sensitivity of the sensor was achieved by perforating the waveguide with holes with diameters of a few tens of nanometers by selective etching of latent tracks created by swift heavy-ion irradiation. Possible strategies for optimizing the plate are discussed

    Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box

    Full text link
    Size segregation of granular mixtures which are almost completely packed in a rotating drum is discussed with an effective simulation and a brief analysis. Instead of a 3D drum, we simulate 2D rotating thin box which is almost completely packed with granular mixtures. The phase inversion of radially segregated pattern which was found in a 3D experiment are qualitatively reproduced with this simulation, and a brief analysis is followed. Moreover in our simulation, a global convection appears after radial segregation pattern is formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M

    Liquid-Solid Phase Transition of the System with Two particles in a Rectangular Box

    Full text link
    We study the statistical properties of two hard spheres in a two dimensional rectangular box. In this system, the relation like Van der Waals equation loop is obtained between the width of the box and the pressure working on side walls. The auto-correlation function of each particle's position is calculated numerically. By this calculation near the critical width, the time at which the correlation become zero gets longer according to the increase of the height of the box. Moreover, fast and slow relaxation processes like α\alpha and β\beta relaxations observed in supper cooled liquid are observed when the height of the box is sufficiently large. These relaxation processes are discussed with the probability distribution of relative position of two particles.Comment: 6 figure

    Understanding and simulating the material behavior during multi-particle irradiations

    Get PDF
    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Localized bioconvection of Euglena caused by phototaxis in the lateral direction

    Full text link
    Euglena, a swimming micro-organism, exhibited a characteristic bioconvection that was localized at the center of a sealed chamber under bright illumination to induce negative phototaxis. This localized pattern consisted of high-density spots, in which convection was found. These observations were reproduced by a mathematical model that was based on the phototaxis of individual cells in both the vertical and lateral directions. Our results indicate that this convection is maintained by upward swimming, as with general bioconvection, and the localization originates from lateral phototaxis

    Phonon driven transport in amorphous semiconductors: Transition probabilities

    Full text link
    Inspired by Holstein's work on small polaron hopping, the evolution equations of localized states and extended states in presence of atomic vibrations are derived for an amorphous semiconductor. The transition probabilities are obtained for four types of transitions: from one localized state to another localized state, from a localized state to an extended state, from an extended state to a localized state, and from one extended state to another extended state. At a temperature not too low, any process involving localized state is activated. The computed mobility of the transitions between localized states agrees with the observed `hopping mobility'. We suggest that the observed `drift mobility' originates from the transitions from localized states to extended states. Analysis of the transition probability from an extended state to a localized state suggests that there exists a short-lifetime belt of extended states inside conduction band or valence band. It agrees with the fact that photoluminescence lifetime decreases with frequency in a-Si/SiO2_{2} quantum well while photoluminescence lifetime is not sensitive to frequency in c-Si/SiO2_{2} structure.Comment: 41 pages, 3 figures, submitted to Phys. Rev.

    Recrystallization of amorphous nano-tracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate.

    Get PDF
    The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∼1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed

    Knowledge in process? Exploring barriers between epidemiological research and local health policy development

    Get PDF
    The Redes de Trueque (RT) thrived during the economic crisis of 2001 – 2002 in Argentina and still stand out as one of the largest Complementary Currency System in the world. These local exchange networks reach a large scale during times of severe economic distress, but as large non-state initiatives, they pose a governance problem. Four types of governance systems were structured within the Argentine RT, of varying degrees of sustainability: a) loosely regulated market systems, b) hierarchies, c) associational regional networks, and d) local communities. Based on a four dimensional analytical framework, this paper discusses the rules of governance and sustainability of the governance systems in the RT. It found that some became more sustainable than others in terms of achieving combinations of scale and organisational modes

    Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    Get PDF
    BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity
    corecore