666 research outputs found

    Turning an organic semiconductor into a low-resistance material by ion implantation

    Get PDF
    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performanc

    Satisfiability by Maxwell-Boltzmann and Bose-Einstein Statistical Distributions

    Get PDF
    Recent studies in theoretical computer science have exploited new algorithms and methodologies based on statistical physics for investigating the structure and the properties of the Satisfiability (SAT) problem. We propose a characterization of the SAT problem as a physical system, using both quantum and classi-cal statistical-physical models. We associate a graph to an SAT instance and we prove that a Bose-Einstein condensation occurs in the instance with higher probability if the quantum distribution is adopted in the gen-eration of the graph. Conversely, the fit-get-rich behavior is more likely if we adopt the Maxwell-Boltzmann distribution. Our method allows a comprehensive analysis of the SAT problem based on a new definition of entropy of an instance, without requiring the computation of its truth assignments. The entropy of an SAT instance increases in the satisfiability region as the number of free variables in the instance increases. Finally, we develop six new solvers for the MaxSAT problem based on quantum and classical statistical dis-tributions, and we test them on random SAT instances, with competitive results. We experimentally prove that the performance of the solvers based on the two distributions depends on the criterion used to flag clauses as satisfied in the SAT solving process

    Percolation transition and the onset of non exponential relaxation in fully frustrated models

    Get PDF
    We numerically study the dynamical properties of fully frustrated models in 2 and 3 dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the ``large scale'' effects of frustration, present below the percolation threshold. Moreover these results are consistent with the picture suggested by Campbell et al. in space of configurations.Comment: 8 pages, 11 figures, revised versio

    Non exponential relaxation in fully frustrated models

    Full text link
    We study the dynamical properties of the fully frustrated Ising model. Due to the absence of disorder the model, contrary to spin glass, does not exhibit any Griffiths phase, which has been associated to non-exponential relaxation dynamics. Nevertheless we find numerically that the model exhibits a stretched exponential behavior below a temperature T_p corresponding to the percolation transition of the Kasteleyn-Fortuin clusters. We have also found that the critical behavior of this clusters for a fully frustrated q-state spin model at the percolation threshold is strongly affected by frustration. In fact while in absence of frustration the q=1 limit gives random percolation, in presence of frustration the critical behavior is in the same universality class of the ferromagnetic q=1/2-state Potts model.Comment: 7 pages, RevTeX, 11 figs, to appear on Physical Review

    Neuronal Glutamate Transporters Control Dopaminergic Signaling and Compulsive Behaviors

    Get PDF
    There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution

    An optimized protocol for assessment of sputum macrorheology in health and muco-obstructive lung disease

    Get PDF
    Background: Airway mucus provides important protective functions in health and abnormal viscoelasticity is a hallmark of muco-obstructive lung diseases such as cystic fibrosis (CF). However, previous studies of sputum macrorheology from healthy individuals and patients with CF using different experimental protocols yielded in part discrepant results and data on a systematic assessment across measurement settings and conditions remain limited. Objectives: The aim of this study was to develop an optimized and reliable protocol for standardized macrorheological measurements of airway mucus model systems and native human sputum from healthy individuals and patients with muco-obstructive lung disease. Methods: Oscillatory rheological shear measurements were performed using bovine submaxillary mucin (BSM) at different concentrations (2% and 10% solids) and sputum samples from healthy controls (n = 10) and patients with CF (n = 10). Viscoelastic properties were determined by amplitude and frequency sweeps at 25°C and 37°C with or without solvent trap using a cone-plate geometry. Results: Under saturated atmosphere, we did not observe any temperature-dependent differences in 2% and 10% BSM macrorheology, whereas in the absence of evaporation control 10% BSM demonstrated a significantly higher viscoelasticity at 37°C. Similarly, during the measurements without evaporation control at 37°C we observed a substantial increase in the storage modulus G′ and the loss modulus G″ of the highly viscoelastic CF sputum but not in the healthy sputum. Conclusion: Our data show systematically higher viscoelasticity of CF compared to healthy sputum at 25°C and 37°C. For measurements at the higher temperature using a solvent trap to prevent evaporation is essential for macrorheological analysis of mucus model systems and native human sputum. Another interesting finding is that the viscoelastic properties are not much sensitive to the applied experimental deformation and yield robust results despite their delicate consistency. The optimized protocol resulting from this work will facilitate standardized quantitative assessment of abnormalities in viscoelastic properties of airway mucus and response to muco-active therapies in patients with CF and other muco-obstructive lung diseases

    New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula

    Get PDF
    We set constraints on O(E/M) Lorentz Violation in QED in an effective field theory framework. A major consequence of such assumptions is the modification of the dispersion relations for electrons/positrons and photons, which in turn can affect the electromagnetic output of astrophysical objects. We compare the information provided by multiwavelength observations with a full and self-consistent computation of the broad-band spectrum of the Crab Nebula. We cast constraints of order 10^{-5} at 95% confidence level on the lepton Lorentz Violation parameters.Comment: 23 pages, 9 figures. v2: added comments and references, matches version accepted by JCA

    Friedreich ataxia patient tissues exhibit increased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXN locus

    Get PDF
    © 2013 Al-Mahdawi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 242193/EFACTS (CS), the Wellcome Trust [089757] (SA) and Ataxia UK (RMP) to MAP
    • …
    corecore