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Recent studies in theoretical computer science have exploited new algorithms and methodologies based on statistical physics
for investigating the structure and the properties of the Satisfiability (SAT) problem. We propose a characterization of the
SAT problem as a physical system, using both quantum and classical statistical-physical models. We associate a graph to a
SAT instance and we prove that a Bose-Einstein condensation occurs in the instance with higher probability if the quantum
distribution is adopted in the generation of the graph. Conversely, the fit-get-rich behavior is more likely if we adopt the
Maxwell-Boltzmann distribution. Our method allows a comprehensive analysis of the SAT problem based on a new definition
of entropy of an instance, without requiring the computation of its truth assignments. The entropy of a SAT instance increases
in the satisfiability region as the number of free variables in the instance increases. Finally, we develop six new solvers for
the MaxSAT problem based on quantum and classical statistical distributions, and we test them on random SAT instances,
with competitive results. We experimentally prove that the performance of the solvers based on the two distributions depends
on the criterion used to flag clauses as satisfied in the SAT solving process.

Categories and Subject Descriptors: F.2.0 [Analysis of algorithms and problem complexity]: General

General Terms: Design, Algorithms, Performance, Theory

Additional Key Words and Phrases: SAT, Complex network, Phase transition, Maxwell-Boltzmann distribution, Bose-
Einstein distribution, SAT solvers, quantum and classical system, Physics-inspired computation

1. INTRODUCTION
Nowadays, the SAT problem is regularly used for solving large-scale computational problems, such
as AI planning, protein structure prediction, haplotype inference, circuit-level prediction of crosstalk
noise, model checking, and hardware and software verification [Clarke et al. 2008]. As a result,
it has received significant research attention [Du et al. 1997; Mézard et al. 2002], and numerous
solver algorithms have been proposed and improved (e.g., by analyzing the structure of each in-
stance [Hamadi et al. 2009]). Since evaluating all these techniques requires the generation of hard
satisfiable instances [Spence 2010], several methods for generating random instances have been
presented to test the solvers performance [SAT-competition 2013].

Many SAT solvers are based on local search techniques [Grégoire et al. 2009], linear program-
ming [Zimmermann and Monfroglio 1997], or tabu search [Nonobe and Ibaraki 1998]. New meth-
ods for the SAT problem analysis consist of translating each instance into a graph (e.g., by using
the planar graph approach [Kautz and Selman 1999] or the Bose-Einstein distribution and the S2G
algorithm based on quantum physics [Angione et al. 2013]). On the other hand, over the last few
years, several research fields have witnessed a remarkable expansion due to the collaboration be-
tween physicists and computer scientists [Mitchell et al. 1992; Mézard and Montanari 2007; Mézard
and Mora 2009]. Therefore, studying the k-SAT problem through models used in statistical physics
represents an unprecedented opportunity to find a new characterization for the satisfiability problem.

In this work, we prove that the S2G algorithm is unlikely to generate Bose-Einstein condensed
graphs when using the Maxwell-Boltzmann distribution (i.e., classical physics instead of quantum
physics). To this aim, we propose a version of the S2G algorithm based on the Maxwell-Boltzmann
distribution and we produce its phase diagrams, which we compare to the Bose-Einstein case. We
also define the entropy of a k-SAT instance and we introduce its temperature, in order to translate
each instance into a fully characterized physical system (summarized in Table I). Bose-Einstein
graphs have lower entropy than Maxwell-Boltzmann ones, in agreement with the physical distribu-
tion of particles. In the phase diagram of a SAT formula, high entropy is associated with many free
variables available to satisfy the few clauses of the formula, which is a typical feature of the SAT
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Table I. Dictionary translating the graph (left) into the k-SAT problem (center) and statistical physics
language (right)

G = (V,E) k-SAT Statistical physics
node clause degeneration state of the energy level of the node
edge link between two clauses one particle for each degeneration state involved

node weight fitness of a clause value of the energy level
edge weight probability of being established weight on particles

out-degree update parameter θ temperature of the system

phase. Finally, we propose six SAT solvers inspired by CHAINSAT [Alava et al. 2008] and PROB-
SAT [Balint and Fröhlich 2010] and augmented with classical and quantum statistical-physical
approaches to classify a SAT instance. The computational effort and the number of clauses satis-
fied by the algorithm depend on the physical parameters (classical or quantum) and on the criterion
chosen to satisfy the instances in CHAINSAT and in PROBSAT.

The remainder of the paper is organized as follows. In Section 2, we introduce the Bose-Einstein
distribution. Section 3 describes the Maxwell-Boltzmann distribution and the S2G version based on
the classical physics. In Section 4, we define the entropy of a k–SAT instance. Fnally, we describe
the six new SAT solvers in Sections 5 and 6.

2. A CHARACTERIZATION OF SAT THROUGH QUANTUM PHYSICS
By translating a SAT formula into a graph, the S2G algorithm [Angione et al. 2013] shows evidence
of a process equivalent to the Bose-Einstein condensation in quantum physics. A vertex vi is a clause
Ci of the k-SAT formula F = C1 ∧ C2 ∧ ... ∧ Cm. The graph is built by defining global and local
fitness functions (named fG and fL respectively) for evaluating literals and clauses. Then, a metric
is defined to compute how many literals are not in common between two clauses. This metric is
proved to be related to the Hamming distance [Richardson and Urbanke 2008]. At each iteration of
S2G, a new clause of the SAT formula is added to the graph as a node, and its energy is computed.
Then, the clause is linked to a clause already in the graph, and a particle is put on both the energy
levels of the clauses sharing the link.

2.1. The Bose-Einstein distribution
Let us consider an isolated system of N identical and indistinguishable bosons confined to a space
of volume V and sharing a given energy E. Let us assume that these bosons can be distributed into
a set of energy levels, where each level Ei is characterized by an energy εi and a degeneration gi,
representing the number of different physical states that can be found at that level. The N identical
and indistinguishable particles are distributed among the energy levels, and each levelEi contains ni
particles, to be accommodated among its gi quantum states. One can readily check that ni particles
may be put on the level Ei (consisting of gi states) in [ni + (gi − 1)]! different ways. Since bosons
are indistinguishable and the physical states are equivalent, the number of possible assignments
of ni bosons on Ei is wi = (ni+gi−1)!

ni!(gi−1)! =
(
ni+gi−1

ni

)
. By iterating for all the energy levels Ei,

a distribution {ni} (i.e., a distribution with ni particles on the level Ei, ∀i) can be obtained in
W =

∏
i wi different ways. Specifically, wi is the number of distinct microstates associated with

the ith level of the spectrum, while W is the number of distinct microstates associated with the
whole distribution set {ni}.

The distribution corresponding to the statistical equilibrium is the most probable one, thus it is the
one that may be reached in the largest number of possible ways. Hence, we compute the maximum
W subject to the conservation of the number of particles

∑
i ni = N and to the preservation of the

energy of the system
∑
i εini = E. Using the method of Lagrange’s multipliers (applied to logW ),

we have the following definition of Bose-Einstein distribution:

ni =
gi

eα+βεi − 1
, (1)
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where α = − µC
kBT

and β = 1
kBT

are inversely proportional (by means of Boltzmann’s constant
kB) to the absolute temperature T of the system at the equilibrium, and µC represents the chemical
potential [Pathria 1996].

Given an ideal Bose-Einstein gas in equilibrium below its transition temperature, the Bose-
Einstein Condensation (BEC) is the property that a finite fraction of particles occupies the lowest
energy level. Below a critical temperature TBEC near to 0 K, all the particles become absolutely
identical, with no possible measurement that can tell them apart. The gas shows a very unusual state
of aggregation of particles, called Bose-Einstein condensate, also referred to as “the fifth state of
matter”. According to Penrose and Onsager [Penrose and Onsager 1956], we can provide a crite-
rion of BEC for an ideal gas in equilibrium: BEC ⇐⇒ 〈n0〉

N = eO(1), No BEC ⇐⇒ 〈n0〉
N = o(1),

where 〈n0〉 is the average number of particles that occupy the lowest energy level E0.

2.2. Condensation phenomena in a SAT formula
The graph construction is thought of as a dynamical process. Given the graph G = (V,E) at the
(i − 1)th iteration, the S2G algorithm adds a clause Cti to G as a node v(Cti), by estimating the
probability of being connected to each node v(Ctj ) already in the graph as

Πtj =
ktj · fL(Ctj )∑|V |
ν=1 ktν · fL(Ctν )

, (2)

where ktj = degree(v(Ctj )) is the connectivity of Ctj (i.e., the number of links shared by v(Ctj )),
and fL(Ctj ) is the fitness of the clause Ctj . This probability distribution ensures that a new vertex
is likely linked to an existing one with high fitness value or/and high connectivity [Bianconi and
Barabási 2001]. A node v(Cti) entering the graph is assigned the energy

εti = −T · log fLr (Cti), (3)

where T = 1/β, and β is a parameter used to model the temperature of the system.
In the mapping of S2G to quantum physics, every clause of the graph is associated with the

degeneration state of the energy level of that clause. For each link established between two clauses,
the S2G algorithm assigns a particle to each of the two degeneration states of the two clauses
involved. The S2G-PA version of the algorithm also includes the concept of preferential attachment.
In particular, at each iteration i, the node that joins the graph is forced to connect to a number of
nodes between 1 and a fixed upper bound ρ. Furthermore, an outgoing link is rewarded θ < 1,
whereas an incoming link is rewarded 1, and therefore the graph is regarded as a directed graph.
The condensation of the SAT formula over its fittest clause is eventually mapped to the emergence
of a star-like topology in the graph. This phenomenon is associated with the BEC of bosons on the
lowest energy level available.

3. THE MAXWELL-BOLTZMANN S2G
An approach to construct graph from k-SAT instances may also involve classical physics, namely
the Maxwell-Boltzmann (MB) distribution. Here we address the key question whether the S2G
algorithm [Angione et al. 2013] could generate Bose-Einstein (BE) condensed graphs by using the
MB distribution. In particular, we prove that the BEC in the satisfiability problem is more likely to
occur if we use the BE distribution in the construction of the graph. To this end, we develop a new
version of the S2G algorithm to generate graphs based on the MB distribution and analyze their
phase diagrams, comparing the behavior in the MB and BE cases.

3.1. The Maxwell-Boltzmann distribution
From the classical-physics standpoint, particles must be regarded as distinguishable entities. The N
particles are distributed among the energy levels, and each level Ei contains ni particles. Note that
in the MB case the set {ni} of occupation numbers does not fully describe the system, since particle
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Fig. 1. Different graphs with the same FW = 1. In (a), a BEC has taken place (i.e., one node has a huge fraction of edges
and the remaining fraction is shared among all the other nodes), while (b) does not show any condensation.

are distinguishable. Therefore, we need to distinguish between which particles are occupying each
energy level. In other words, we need to count not merely the possible sets {{ni}i} of occupation
numbers, but also the possible microstates in each set.

The number of possible sets of occupation numbers is counted by taking into account that par-
ticles are distinguishable. Therefore, the selection of which particle is accommodated on which
energy level must be ordered. At this stage, we do not investigate the order inside energy levels be-
cause we will do so when counting the microstates. As a result, the distribution set ni is obtainable
in N !∏

i ni!
different ways. Nevertheless, due to the Gibbs correction factor (see [Pathria 1996]) or,

equivalently, using Stirling’s approximations for the factorial N !, we obtain the correct counting
1∏
i ni!

.
As regards microstates, since particle are distinguishable, when accommodating ni particles on

the energy levelEi, any of its ni particles may be put into any of its gi quantum states independently
from one another, and all the resulting microstates are considered as distinct. In other words, each
particle must be assigned one of the gi quantum states, and this can be done in gi different ways. By
iterating this assignment independently from one particle to another, ni particles may be put on the
level Ei (consisting of gi states) in gnii different ways.

Combining the two results, we finally obtain W =
∏
i
g
ni
i

ni!
, which is the total number of possible

distinct microstates of the system. Using the same method as in the BE case, this expression leads
to the following definition of Maxwell-Boltzmann distribution:

ni =
gi

eα+βεi
. (4)

3.2. A S2G version based on classical physics
Since particles in S2G algorithm are associated with links between clauses in the graph of a SAT in-
stance, and since the particles of the MB distribution are distinguishable, the idea underlying the MB
version of the S2G algorithm is that also the links between clauses must be distinguishable. There-
fore, when we run the S2G algorithm using the MB distribution, we (i) switch off the preferential
attachment (PA) used in [Angione et al. 2013], and (ii) ensure that if a new node i will be linked to
a node j with probability pij , then degree(i) = degree(i) + pij and degree(j) = degree(j) + pij .
This new pattern permits that each new node is connected to a variable number of nodes in the graph
(including zero), and therefore could generate graphs with many connected components. Hence, the
original definition of Fraction Winner

FW = wlinks/tlinks, (5)

where wlinks = number of links shared by the winner, and tlinks = number of links of the
whole graph [Angione et al. 2013], leads to graphs with the same FW, but with different topological
structure (Figure 1).

Our goal is to study whether the graph built by using the MB distribution can show cases of
BEC. For this reason, we introduce a new definition of FW, which takes into account the presence
of connected components. Let G(V,E) be a graph with |V | vertices and |E| edges. We compute
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Fig. 2. Generalized Fraction Winner BE-MB. This plot shows the comparison between the GFW in the MB and BE cases.
The MB plots always shows lower values than BE plots. Hence, BEC takes place under BE conditions with more probability
than under MB conditions. The experimental data points have been fitted with a sixth-order regression curve using the least-
squares approach. The gray box shows the region of the phase diagram where the phase transition between satisfiable and
unsatisfiable instances of 3-SAT is located [Monasson et al. 1999; Achlioptas and Ricci-Tersenghi 2009].

the number of connected components (CCs) by running the Depth First Search (DFS) algorithm
[Cormen et al. 2001]. From the CCs, we obtain the number of nodes shared by these components
(CNs), namely all the nodes of G with nonzero degree. Then, we define the Generalized Fraction
Winner as

GFW = FW · CNs/|V |. (6)

We remark that this definition is a generalization of the previous definition of FW. Indeed, in the BE
construction, the PA ensures that CNs = |V |. In Figure 2 we show the comparison between the GFW
in the BE and MB cases. Remarkably, the MB values are always lower than BE values, indicating
that the probability of Bose-Einstein condensation is higher if the BE distribution is adopted in the
S2G algorithm.

4. EXPERIMENTAL RESULTS
All the results included in this section have been obtained with an experimental protocol consisting
of 100 SAT instances for each combination of parameter values, with 30 S2G graph generations per
instance.

4.1. The entropy of a k–SAT instance
The aim of this section is to characterize the k-SAT problem as a physical system, in order to analyze
the complexity of certifying the satisfiability of a random k-SAT instance, and eventually to find a
satisfying assignment. Let us introduce a definition of entropy for a k-SAT instance, based on a
discretized form of the von Neumann entropy [Kopp et al. 2007]:

VN(x, p, q) = − 1

n

n∑
i=1

p(xi) log [q(xi)p(xi)] , (7)
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Table II. Dictionary translating entropy status of the SAT formula into its structure as function of α

Entropy Particle status Information SAT-instance structure SAT/UNSAT
high disorder high many free variables available to satisfy the few clauses of the formula SAT
low order low few free variables available to satisfy the many clauses of the formula UNSAT

When available, a free variable can be set to TRUE or FALSE so as to satisfy the instance. An in-
stance in the SAT or UNSAT phase is satisfiable or unsatisfiable (respectively) with high probability.

where p and q are respectively a true distribution and an approximated distribution of a random
discretized variable x with n possible values. In this work, we set n = number of energy levels,
and we compute the entropy every time that a new clause is added to the graph. The final entropy
is computed after the last clause of the k-SAT instance is added to the final graph. In a BE system,
when a new node ν is added to the graph using the S2G algorithm, we define:

qBE(xi) = number of different physical states gi on the level
Ei/number of nodes already added to the graph;

pBE(xi) =

{
1 if ν has been added to the level Ei
0 otherwise.

Conversely, in a MB system we set

qMB(xi) = number of different physical states gi on the level
Ei/number of nodes already added to the graph;

pMB(xi) = probability pi, computed by S2G, that a new node
is added to the level Ei.

In the characterization, the number of nodes of the graph equals the number of available degenera-
tion states, q is the expected distribution followed by the new node when linking to an existing one,
and p is the actual distribution, outcome of the actual link established.

In Figure 3 we plot the von Neumann final entropy as function of the clauses-to-variables ratio α.
The BE systems always have lower entropy than the MB ones, and the entropy behavior is in keeping
with the distribution of BEC shown in [Angione et al. 2013]. Hence, the larger is the probability that
BEC occurs, the larger is the entropy. Moreover, the plot shows that when α decreases, the entropy
increases. This process is associated with an increment of the spatial (geometric) disorder of the
particles [Bal’makov 2001]. It follows that the disorder of the particles is related to the satisfiability
of the instance (which depends on the value of α). In this way, we are able to characterize the
complexity of certifying the satisfiability of a k-SAT instance by computing its entropy (see Table
II). We have also performed further analyses, omitted due to lack of space, using the Rényi entropy
[Rényi 1961] and the information gain [Niven 2005] to confirm our results.

4.2. The role of the non-integer out-degree θ
In [Angione et al. 2013], the parameter θ ∈]0; 1] represents the out-degree increment of the node
v(Cti) linked to the existing node v(Ctj ) during the generation of the graph. In particular, the
same edge between the new node v(Cti) and v(Ctj ) increases their connectivities kti and ktj as
kti = kti + θ and ktj = ktj + 1. Making use of the relation ki = θ · od(v(Ci)) + id(v(Ci)),
where od and id are the out-degree and in-degree of v(Cti) respectively, nodes aim to connect
to a particular node, which gets richer and richer. Indeed, as incoming links are rewarded more
than outgoing links (1 and θ < 1 respectively), the connectivity of the node that acquires links
increases much more than the connectivity of the nodes linking to it. In this work, we aim to show
the connection between θ and the temperature of the system under investigation, namely the k-SAT
instance.

It is largely known that BEC takes place only in a dilute gas of bosons cooled to temperatures
near to the absolute zero [Pethick and Smith 2001]. Therefore, we analyze the system focusing on
values of θ near to zero, in order to prove that for low values of θ the BEC takes place with more
probability than for high values of θ. In order to understand the role played by θ, we analyze 41
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Fig. 3. von Neumann entropy of 3-SAT. The entropy increases as α decreases. Since the entropy represents the spatial
disorder of the particles [Bal’makov 2001], in the k-SAT problem the physical concept of disorder is related to the complexity
of certifying the satisfiability of the instance. The plot shows that BE systems always have lower entropy than MB ones, in
agreement with the physical distribution of particles. Indeed, BE systems are often characterized by particles established on
the same energy level, which in case of BEC is the lowest available.

different values of θ ∈]0, 1]. Figure 4 shows that the probability of BEC increases as θ decreases.
Hence, if θ approaches zero, the number of BECs increases, suggesting that the parameter θ in the
S2G algorithm is related to the absolute temperature in the corresponding physical system.

In order to investigate thoroughly the nonlinearity shown by the FW as function of θ, we de-
fine g(α) as the third-order polynomial fitting computed with the least-squares approach for each
curve plotted in Figure 4. We define the following measure of nonlinearity over an interval [a, b] as∫ b
a
|g′′(α)|. Using this formula we can compute the amount of variation in the first derivative of g,

thus quantifying the nonlinearity of g in its domain. Notably, the results shown in Figure 5 allow to
identify some clusters of fraction winner plots showing similar nonlinear behavior.

5. THE MAXWELL-BOLTZMANN CHAINSAT
In section 3 we focused on the fraction winner related to the MB and the BE distributions. The
different results obtained by running the S2G algorithm with these two distributions lead to the cre-
ation of the final graphs with different topological structures. That is, the energy assigned by S2G to
each clause (i.e., the weight of the clause) changes depending on the distribution being used. In or-
der to study the changes that each distribution involves, here we run the LC version of CHAINSAT
[Angione et al. 2013] using the weight provided by the S2G algorithm run with MB and BE distri-
butions. The SAT instances are created through A. van Gelder’s generator MKCNF.C1. The MaxSAT
problem consists of determining the truth assignments such that the number of clauses satisfied is
maximized [Festa et al. 2007]. In particular, we investigate how the number of satisfied clauses and
the number of flips change in each modified version of CHAINSAT (named MB-CHAINSAT and
BE-CHAINSAT). Surprisingly, as shown Figure 6, by comparing the percentage of satisfied clauses
we can speculate that MB-ChainSAT satisfies the same number of instances as BE-ChainSAT.

1ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances.
We set the generator to obtain both satisfiable and unsatisfiable formulas, so as to obtain a purely uniform random k-SAT distribution.
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Fig. 4. Fraction Winner of 3-SAT. We report the number of links shared by the winner node against α. After a decrease for
low values of α, the FW is almost linear for high values of θ. For low values of θ, we observe a nonlinear variation, meaning
that if α approaches 0, the number of BEC cases increases with a high derivative. This behavior of θ is strongly related to
the physical property of having a large number of BECs when the absolute temperature approaches 0.
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θ = 0.04. Interestingly, in [0.09, 0.14] there is a large increment of nonlinearity.

We investigate this comparison more thoroughly by analyzing the difference of satisfied clauses
for each value of n (number of variables). In particular, we observe that MB-CHAINSAT and BE-
CHAINSAT satisfy approximately the same number of clauses (Table III). We also study the number
of flips performed by the two algorithms, representing their computational effort. Figure 7 displays
the number of flips (normalized to 1) obtained by running BE-CHAINSAT and MB-CHAINSAT.
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Fig. 6. MaxSAT for LC-ChainSAT. We plot the percentage of clauses satisfied by BE-ChainSAT and MB-ChainSAT as
function of the number of clauses m and variables n, by using the Linked-Clauses version (LC). Although MB-ChainSAT
seems to solve a higher percentage of clauses than BE-ChainSAT, the detailed analysis in Table III highlights that they solve
the same number of instances for every value of n.

Table III. Summary of LC SAT solvers performance

LC-Maxwell Boltzmann LC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1185219.00 0.8567 1187645.11 0.8567 1176755.92
50 0.8580 1200317.11 0.8580 1159281.68 0.8580 1165854.05
75 0.8587 1228486.09 0.8587 1219520.08 0.8587 1231789.81

100 0.8590 1280600.65 0.8590 1280042.75 0.8590 1296716.23
Average 0.8581 1223655.71 0.8581 1211622.34 0.8581 1217779.00

For each value of n (number of variables), we report the percentage of satisfied clauses and the number of flips
performed by MB-CHAINSAT, BE-CHAINSAT and CHAINSAT, using the LC version. All the algorithms en-
sure the same percentage of satisfied clauses. In terms of flips, CHAINSAT outperforms MB-CHAINSAT and BE-
CHAINSAT only for n = 25. When n > 25, BE-CHAINSAT outperforms MB-CHAINSAT and CHAINSAT, as it
solves the same percentage of clauses with less flips.

MB-CHAINSAT requires a higher computational effort than BE-CHAINSAT, except for n = 25.
A detailed analysis of the number of flips is shown in Table III.

The average number of flips used for solving an instance with MB-CHAINSAT is 1223655.71
against 1211622.34 with BE-CHAINSAT. Therefore, on average, BE-CHAINSAT needs a lower
computational effort than MB-CHAINSAT. This is due to the structure of the BE-graphs, with a
fraction winner higher than MB-graphs (as shown in Section 3): a node that shares more links
enables to find quickly a truth assignment for the instance, performing less flips. Therefore, if we
consider graphs with n > 25 and our LC version of CHAINSAT, BE-CHAINSAT performs better
than MB-CHAINSAT, as it solves the same number of instances performing less flips.

Conversely, when using the NLC version of CHAINSAT [Angione et al. 2013], MB-CHAINSAT
generally outperforms BE-CHAINSAT in terms of satisfied clauses, but whenm approximates 400,
BE-CHAINSAT satisfies more clauses than MB-CHAINSAT (Figure 8) . We investigate this com-
parison more thoroughly by analyzing the difference of satisfied clauses for each value of n (number
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Fig. 7. Computational Effort of LC-CHAINSAT. We plot the number of flips (normalized to 1) performed by BE-
CHAINSAT and MB-CHAINSAT, using the LC version. BE-CHAINSAT employs less flips than MB-CHAINSAT, therefore
requiring a lower computational effort. This highlights the importance of the topological structure of a graph. Since with the
BE distribution the graph has a FW higher than the graph built with the MB distribution, there exists a node that, sharing a
large number of links, allows to find a solution performing less flips.

Table IV. Summary of NLC SAT solvers performance

NLC-Maxwell Boltzmann NLC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1175219.03 0.8563 1177645.11 0.8567 1176755.92
50 0.8577 1162949.63 0.8580 1166531.26 0.8580 1165854.05
75 0.8587 1211373.56 0.8587 1229056.62 0.8587 1231789.81

100 0.8590 1269268.24 0.8587 1275695.48 0.8590 1296716.23
Average 0.8580 1204702.62 0.8579 1212232.12 0.8581 1217779.00

For each value of n (number of variables), we report the percentage of clauses satisfied and the number of flips
performed by MB-CHAINSAT, BE-CHAINSAT and CHAINSAT by using the NLC version. As regards flips, MB-
CHAINSAT outperforms the other algorithms for every value of n.

of variables). The results are shown in Table IV. Finally, in Figure 9 we show that in the NLC case
MB-CHAINSAT is computationally less expensive than BE-CHAINSAT.

In conclusion, for the LC version, the BE distribution (namely, BE-CHAINSAT) always outper-
forms MB-CHAINSAT and CHAINSAT except for n = 25, as it solves the same percentage of
clauses with less flips. Conversely, for the NLC version and in terms of computational effort, the
MB distribution (namely, MB-CHAINSAT), outperforms the other algorithms for every value of n.

6. THE MAXWELL-BOLTZMANN PROBSAT AND THE BOSE-EINSTEIN PROBSAT
We have also analyzed the topological structure of the BE and MB graphs by introducing two new
versions of the PROBSAT algorithm. PROBSAT, winner of the Random SAT track from the SAT
Competition 2013, is a stochastic local search SAT solver based on probability distributions. Since
the algorithm uses a random selection of unsatisfied clauses, we modified this criterion introducing
the clauses’ energy provided by the S2G algorithm. In particular, we replaced the random choice
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Fig. 8. MaxSAT for NLC-CHAINSAT. We plot the percentage of clauses satisfied by BE-CHAINSAT and MB-
CHAINSAT as function of the number of clauses m and variables n, by using the Not-Linked-Clauses versions (NLC).
MB-CHAINSAT seems to solve a higher percentage of clauses than BE-CHAINSAT. Actually, MB-CHAINSAT outper-
forms BE-CHAINSAT only for few values of α. The two algorithms solve exactly the same number of instances for n = 75.
(A more detailed analysis is shown in Table IV.)
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Fig. 9. Computational Effort of NLC-CHAINSAT. We plot the number of flips (normalized to 1) performed by the two
algorithms by using the NLC version. BE-CHAINSAT employs more flips than MB-CHAINSAT, thus requiring a higher
computational effort.
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Table V. Summary of PROBSAT solvers performance

Maxwell Boltzmann-ProbSAT Bose Einstein-ProbSAT ProbSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.9530 550801.42 0.9526 550803.49 0.9526 550797.85
50 0.9079 592512.60 0.9078 592525.46 0.9071 592498.46
75 0.8653 603676.02 0.8665 603680.32 0.8645 603711.44

100 0.8217 610411.94 0.8202 610441.18 0.8227 610311.33
Average 0.8870 589350.49 0.8868 589362.61 0.8867 589329.77

For each value of n (number of variables), we report the percentage of clauses satisfied and the number of flips performed
by MB-PROBSAT, BE-PROBSAT and PROBSAT. As regards the percentage of clauses satisfied, MB-PROBSAT and
BE-PROBSAT outperform the PROBSAT algorithm for n = 25, n = 50 and n = 75.

of the unsatisfied clause with an ordered one. By using the same method of the NLC-CHAINSAT
[Angione et al. 2013], we selected the clause with the lowest energy among the unsatisfied clauses.
Hence, we obtained two versions of PROBSAT: MB-PROBSAT and BE-PROBSAT, which take
into account the clauses’ energy provided by the S2G algorithm run with MB and BE distributions
respectively. As done before for the CHAINSAT algorithm, if all the clauses in the set of unsatisfied
clauses have been already chosen once, we reset the original random choice to prevent that the
algorithm always analyzes the same clauses.

We tested the algorithms on the same set of instances previously used for the ChainSAT algorithm
and we ran the PROBSAT with maxTries = 1 and maxFlips = 106. In Table V, we present a
comparison between the three different versions of PROBSAT (MB-PROBSAT, BE-PROBSAT
and PROBSAT). Both MB-PROBSAT and BE-PROBSAT satisfy more clauses than the original
PROBSAT, except for n = 100. In terms of flips, the two modified versions require a slightly higher
computational effort than PROBSAT. This implies that choosing the clauses with the lowest energy
provides a useful tool to maximize the number of satisfied clauses, confirming the hypothesis that
the clauses with the lowest energy play an important role in the performance of the SAT solvers.

7. DISCUSSION AND CONCLUSIONS
In this research work, we have proposed a statistical-physical characterization for the Satisfiability
problem. Starting from the S2G algorithm [Angione et al. 2013], we have developed a new algo-
rithm able to translate a SAT instance into a graph by using the BE (quantum) or the MB (classical)
statistical distributions. The phase diagram of the graph provided by the algorithm shows evidence
of condensation as the clauses-to-variables ratio decreases. Furthermore, we have carried out a sys-
tematic study to employ the characterization in the well-known CHAINSAT [Alava et al. 2008]
and PROBSAT [Balint and Fröhlich 2010] solvers, without requiring a priori investigation of their
solutions. The fitness-based sorting provided by our algorithm allows to enhance both solvers.

In order to investigate the role of the quantum physics in our algorithm, we have cross-compared
the behavior of our algorithm when using classical or quantum physics. From the phase diagrams,
it is evident that graphs are more likely to undergo BEC if they are generated through the algo-
rithm based on quantum physics, while the fit-get-rich behavior is more likely with the algorithm
based on classical physics. Moreover, when using our quantum and classical algorithms to drive
the CHAINSAT and PROBSAT solvers, BE-CHAINSAT is computationally less or more expensive
than MB-CHAINSAT, in terms of flips performed, depending on the CHAINSAT version used (LC
or NLC), while MB-PROBSAT outperforms BE-PROBSAT in terms of flips.

Notably, we have also defined the entropy of a SAT instance according to the information gained
during the generation of its graph through S2G. We have obtained that a high entropy is associated
with high disorder, and with the SAT phase. An instance with high entropy has a large number of
free variables that can be assigned a convenient truth value to satisfy the SAT instance. Furthermore,
from a statistical-physical standpoint, we have shown that the temperature of the SAT problem is
mapped by the parameter representing the out-degree assigned dynamically to the nodes of the
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graph associated with the instance. These findings highlight the emergence of a comprehensive
characterization of the k-SAT problem using the classical and quantum particle distributions of
statistical physics.
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