8 research outputs found

    Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellite

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624

    Comparison of optical-feedback cavity-enhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration

    Get PDF
    International audienceWe present the first comparison of carbon monoxide (CO) measurements performed with a portable laser spectrometer that exploits the optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique, against a high-performance automated gas chromatograph (GC) with a mercuric oxide reduction gas detector (RGD). First, measurements of atmospheric CO mole fraction were continuously collected in a Paris (France) suburb over 1 week. Both instruments showed an excellent agreement within typically 2 ppb (part per billion in volume), fulfilling the World Meteorological Organization (WMO) recommendation for CO inter-laboratory comparison. The compact size and ro-bustness of the OF-CEAS instrument allowed its operation aboard a small aircraft employed for routine tropospheric air analysis over the French Orléans forest area. Direct OF-CEAS real-time CO measurements in tropospheric air were then compared with later analysis of flask samples by the gas chromatograph. Again, a very good agreement was observed. This work establishes that the OF-CEAS laser spectrometer can run unattended at a very high level of sensitivity (< 1 ppb) and stability without any periodic calibration

    The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) Aircraft System for Detailed, Long-Term, Global-Scale Measurement of Trace Gases and Aerosol in a Changing Atmosphere

    No full text
    The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) involves monthly deployment of an automated atmospheric observatory inside a container on board of Lufthansa Airbus A340-600. The project is run by the Max Planck Institute for Chemistry (Mainz, Germany) with a contribution from several institutes. IRMM's contribution starts in 2007, by measuring CO2 isotope composition in the upper troposphere (no data presented in the paper). The paper describes the current status of the project and gives examples of this observational approach.JRC.D.4-Isotope measurement

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    No full text
    During the summer of 2018 a widespread drought developed over Northern and Central Europe. The significant increase in temperature and the reduction of soil moisture have influenced the carbon dioxide (CO2 ) exchanges between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in auto- and heterotrophic respiration, or allowing more frequent and/or stronger fires, which were particularly important in Sweden at the end of July 2018. In this study we characterise the resulting perturbation of the atmospheric CO2 seasonal cycles. The year 2018 has an excellent coverage of the European regions affected by drought, allowing to investigate how large-scale ecosystem flux anomalies impacted spatial CO2 gradients between stations in 2018. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the dense Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here we show that the usual summer minimum in CO2 mole fraction due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in northern Europe. Notwithstanding,the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration legated from the previous summer. For stations with sufficiently long time series, the amplitudes of the CO2 anomaly observed in 2018 were compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies during these years, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018.JRC.C.5-Air and Climat

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements

    Get PDF
    International audienceDuring the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing theinvestigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS)network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usualsummer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas mostaffected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018.This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’
    corecore