3,063 research outputs found

    Deep Learning in Lane Marking Detection: A Survey

    Get PDF
    Lane marking detection is a fundamental but crucial step in intelligent driving systems. It can not only provide relevant road condition information to prevent lane departure but also assist vehicle positioning and forehead car detection. However, lane marking detection faces many challenges, including extreme lighting, missing lane markings, and obstacle obstructions. Recently, deep learning-based algorithms draw much attention in intelligent driving society because of their excellent performance. In this paper, we review deep learning methods for lane marking detection, focusing on their network structures and optimization objectives, the two key determinants of their success. Besides, we summarize existing lane-related datasets, evaluation criteria, and common data processing techniques. We also compare the detection performance and running time of various methods, and conclude with some current challenges and future trends for deep learning-based lane marking detection algorithm

    Substrate co-doping modulates electronic metal-support interactions and significantly enhances single-atom catalysis

    Get PDF
    Transitional metal nanoparticles or atoms deposited on appropriate substrates can lead to highly economical, efficient, and selective catalysis. One of the greatest challenges is to control the electronic metal–support interactions (EMSI) between the supported metal atoms and the substrate so as to optimize their catalytic performance. Here, from first-principles calculations, we show that an otherwise inactive Pd single adatom on TiO2(110) can be tuned into a highly effective catalyst, e.g. for O2 adsorption and CO oxidation, by purposefully selected metal–nonmetal co-dopant pairs in the substrate. Such an effect is proved here to result unambiguously from a significantly enhanced EMSI. A nearly linear correlation is noted between the strength of the EMSI and the activation of the adsorbed O2 molecule, as well as the energy barrier for CO oxidation. Particularly, the enhanced EMSI shifts the frontier orbital of the deposited Pd atom upward and largely enhances the hybridization and charge transfer between the O2 molecule and the Pd atom. Upon co-doping, the activation barrier for CO oxidation on the Pd monomer is also reduced to a level comparable to that on the Pd dimer which was experimentally reported to be highly efficient for CO oxidation. The present findings provide new insights into the understanding of the EMSI in heterogeneous catalysis and can open new avenues to design and fabricate cost-effective single-atom-sized and/or nanometer-sized catalysts

    Balson: Bayesian least squares optimization with nonnegative L1-Norm constraint

    Get PDF
    © 2018 IEEE. A Bayesian approach termed the BAyesian Least Squares Optimization with Nonnegative L1-norm constraint (BALSON) is proposed. The error distribution of data fitting is described by Gaussian likelihood. The parameter distribution is assumed to be a Dirichlet distribution. With the Bayes rule, searching for the optimal parameters is equivalent to finding the mode of the posterior distribution. In order to explicitly characterize the nonnegative L1-norm constraint of the parameters, we further approximate the true posterior distribution by a Dirichlet distribution. We estimate the moments of the approximated Dirichlet posterior distribution by sampling methods. Four sampling methods have been introduced and implemented. With the estimated posterior distributions, the original parameters can be effectively reconstructed in polynomial fitting problems, and the BALSON framework is found to perform better than conventional methods

    Spectral Super-resolution for RGB Images using Class-based BP Neural Networks

    Get PDF
    Hyperspectral images are of high spectral resolution and have been widely used in many applications, but the imaging process to achieve high spectral resolution is at the expense of spatial resolution. This paper aims to construct a high-spatial-resolution hyperspectral (HHS) image from a high-spatial-resolution RGB image, by proposing a novel class-based spectral super-resolution method. With the help of a set of RGB and HHS image-pairs, our proposed method learns nonlinear spectral mappings between RGB and HHS image-pairs using class-based back propagation neural networks (BPNNs). In the training stage, unsupervised clustering is used to divide an RGB image into several classes according to spectral correlation, and the spectrum-pairs from the classified RGB images and the corresponding HHS images are used to train the BPNNs, to establish the nonlinear spectral mapping for each class. In the spectral super-resolution stage, a supervised classification is used to classify the given RGB image into the classes determined during the training stage, and the final HHS image is reconstructed from the classified given RGB image using the trained BPNNs. Comparisons on three standard datasets, ICVL, CAVE and NUS, demonstrate that, our proposed method achieves a better spectral super-resolution quality than related state-of-the-art methods

    SPSIM: A Superpixel-Based Similarity Index for Full-Reference Image Quality Assessment

    Get PDF
    Full-reference image quality assessment algorithms usually perform comparisons of features extracted from square patches. These patches do not have any visual meanings. On the contrary, a superpixel is a set of image pixels that share similar visual characteristics and is thus perceptually meaningful. Features from superpixels may improve the performance of image quality assessment. Inspired by this, we propose a new superpixel-based similarity index by extracting perceptually meaningful features and revising similarity measures. The proposed method evaluates image quality on the basis of three measurements, namely, superpixel luminance similarity, superpixel chrominance similarity, and pixel gradient similarity. The first two measurements assess the overall visual impression on local images. The third measurement quantifies structural variations. The impact of superpixel-based regional gradient consistency on image quality is also analyzed. Distorted images showing high regional gradient consistency with the corresponding reference images are visually appreciated. Therefore, the three measurements are further revised by incorporating the regional gradient consistency into their computations. A weighting function that indicates superpixel-based texture complexity is utilized in the pooling stage to obtain the final quality score. Experiments on several benchmark databases demonstrate that the proposed method is competitive with the state-of-the-art metrics

    A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions

    Get PDF
    Polarization images encode high resolution microstructural information even at low resolution. We propose a framework combining polarization imaging and traditional microscopy imaging, constructing a dual-modality machine learning framework that is not only accurate but also generalizable and interpretable. We demonstrate the viability of our proposed framework using the cervical intraepithelial neoplasia grading task, providing a polarimetry feature parameter to quantitatively characterize microstructural variations with lesion progression in hematoxylin-eosin-stained pathological sections of cervical precancerous tissues. By taking advantages of polarization imaging techniques and machine learning methods, the model enables interpretable and quantitative diagnosis of cervical precancerous lesion cases with improved sensitivity and accuracy in a low-resolution and wide-field system. The proposed framework applies routine image-analysis technology to identify the macro-structure and segment the target region in H&E-stained pathological images, and then employs emerging polarization method to extract the micro-structure information of the target region, which intends to expand the boundary of the current image-heavy digital pathology, bringing new possibilities for quantitative medical diagnosis

    Calibration method to improve transfer from simulation to quadruped robots

    Get PDF
    Using passive compliance in robotic locomotion has been seen as a cheap and straightforward way of increasing the performance in energy consumption and robustness. However, the control for such systems remains quite challenging when using traditional robotic techniques. The progress in machine learning opens a horizon of new possibilities in this direction but the training methods are generally too long and laborious to be conducted on a real robot platform. On the other hand, learning a control policy in simulation also raises a lot of complication in the transfer. In this paper, we designed a cheap quadruped robot and detail a calibration method to optimize a simulation model in order to facilitate the transfer of parametric motor primitives. We present results validating the transfer of Central Pattern Generators (CPG) learned in simulation to the robot which already give positive insights on the validity of this method

    Early Clinical and Subclinical Visual Evoked Potential and Humphrey's Visual Field Defects in Cryptococcal Meningitis.

    Get PDF
    Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey's visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Dense transcript profiling in single cells by image correlation decoding

    Get PDF
    Sequential barcoded fluorescent in situ hybridization (seqFISH) allows large numbers of molecular species to be accurately detected in single cells, but multiplexing is limited by the density of barcoded objects. We present correlation FISH (corrFISH), a method to resolve dense temporal barcodes in sequential hybridization experiments. Using corrFISH, we quantified highly expressed ribosomal protein genes in single cultured cells and mouse thymus sections, revealing cell-type-specific gene expression
    • …
    corecore