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SPSIM: A SuperPixel-based SIMilarity Index for
Full-reference Image Quality Assessment

Wen Sun, Qingmin Liao, Jing-Hao Xue, and Fei Zhou

Abstract—Full-reference image quality assessment algorithms
usually perform comparisons of features extracted from square
patches. These patches do not have any visual meanings. On the
contrary, a superpixel is a set of image pixels that share similar vi-
sual characteristics and is thus perceptually meaningful. Features
from superpixels may improve the performance of image quality
assessment. Inspired by this, we propose a new superpixel-based
similarity index (SPSIM) by extracting perceptually meaningful
features and revising similarity measures. The proposed method
evaluates image quality on the basis of three measurements,
namely, superpixel luminance similarity, superpixel chrominance
similarity, and pixel gradient similarity. The first two measure-
ments assess the overall visual impression on local images. The
third measurement quantifies structural variations. The impact of
superpixel-based regional gradient consistency on image quality
is also analyzed. Distorted images showing high regional gradient
consistency with the corresponding reference images are visually
appreciated. Therefore, the three measurements are further
revised by incorporating regional gradient consistency into their
computations. A weighting function that indicates superpixel-
based texture complexity is utilized in the pooling stage to
obtain the final quality score. Experiments on several benchmark
databases demonstrate that the proposed method is competitive
with state-of-the-art metrics.

Index Terms—Full-reference, image quality assessment, super-
pixel, regional gradient consistency, texture complexity.

I. INTRODUCTION

IMAGE quality assessment (IQA) is widely used as a
benchmark in numerous image processing tasks, such as

image super-resolution [1], image compression [2], and image
enhancement [3]. Subjective assessment by humans is the most
accurate IQA metric because images are finally presented to
human beings. However, subjective assessment is inapplicable
to practical tasks because it is laborious. Objective assessment
is more practical than subjective assessment in this case
because the quality of an image is automatically predicted
by machines. Objective IQA metrics can be categorized into
full-reference (FR), reduced-reference (RR), and no-reference
(NR) [4]. In FR methods, the information of the reference
image is completely available, whereas NR methods do not
require a reference image. RR metrics are between them and
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the reference image is partially accessible. This study focuses
on FR IQA algorithms.

Early FR IQA methods, such as peak signal to noise ratio
(PSNR) and mean squared error (MSE), evaluate image quality
based on intensity differences between reference and distorted
images. In these two methods, only a numerical comparison is
performed while the visual mechanism of humans is ignored.
To solve this problem, scholars have proposed many metrics
for incorporating the characteristics of the human visual sys-
tem (HVS). Visual signal to noise ratio (VSNR) exploits near-
threshold and supra-threshold properties of human vision to
measure image fidelity [5]. In the metric called most apparent
distortion (MAD), distortion visibility is calculated, and differ-
ent strategies are adopted for near-threshold and clearly visible
distortions [6]. Visual information fidelity (VIF) [7] predicts
image quality by using shared information between reference
and distorted images. Current research on HVS is limited, and
only part of its characteristics has been modeled and utilized
[8].

Based on the assumption that human visual perception is
highly sensitive to structural information, the structural simi-
larity (SSIM) index is used to assess image quality from three
aspects, namely, luminance comparison, contrast comparison,
and structure comparison [9]. SSIM is one of the most well-
known FR metrics due to its computational efficiency and sat-
isfactory performance. Extended versions of SSIM have been
presented. Wavelet-domain structural similarity (WDSSIM)
performs structural similarity in the wavelet-domain, and the
relative importance of edge information is considered [10]. In
information content weighted structural similarity (IW-SSIM)
[11], information content is measured and used as a perceptual
weight for pooling. A new multivariate SSIM (MvSSIM) index
is proposed in [12] to assess the quality of hyperspectral
images by considering the pixel spectrum as a multivariate
random vector.

Image gradient has been frequently included in IQA algo-
rithms because it conveys important visual information [13].
Given that HVS understands images by low-level features, the
feature similarity (FSIM) index uses phase congruency and
gradient magnitude as primary features [14]. Moreover, phase
congruency functions as a local weight in the final pooling.
Liu et al. [13] proposed the gradient similarity (GSIM), in
which image gradient is obtained by using four directional
filters and compared by considering the masking effect and
distortion visibility. In [15], a computationally efficient and
highly effective method, namely, gradient magnitude similarity
deviation (GMSD), is proposed. The most remarkable innova-
tion of GMSD is a new pooling strategy that exploits the global
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variation of gradient similarity to characterize image quality.
The visual saliency-induced index (VSI) incorporates image
saliency analysis into IQA, where visual saliency similarity
and gradient similarity on each pixel are calculated and pooled
by using visual saliency as local weights [16].

Conventional IQA metrics focus on the intensity parts of
images because HVS perceives intensity changes more easily
than chromatic variations. However, chromatic variations are
also important and should be considered appropriately [17].
Several methods have been designed recently to measure
chromatic variations. Directional statistics are used in [18],
where color descriptors from three color channels, namely,
hue, chroma, and lightness are extracted and compared. In
[19], a method based on color contrast similarity and color
value difference (CSVD) was developed to evaluate the quality
of color correction images. CSVD calculates color contrast,
average-based color value difference in the CMYK color
space, and span-based color value difference in the HSV color
space. The final score is a weighted sum of the scores of each
part.

Although much progress has been achieved in FR IQA,
several problems still exist. First, the features used in existing
methods are generally extracted from square image patches.
These patches do not have visual meanings, and thus the
resulting features may not be optimal. Second, in many FR
models, the quality of a given pixel is determined by the
change of features on that pixel between the reference and
distorted images, whereas the overall change of features in
a small region is ignored. Image pixels are only meaningful
when gathered as image regions, indicating that regional quali-
ty assessment should be performed. Finally, in most traditional
FR methods, a large difference of local features indicates poor
local quality. However, this is not always true for commonly
used features. For example, the quality of contrast-enhanced
images may still be acceptable, despite evident differences
detected using common features [8].

To solve these problems, this study proposes a new method,
namely, superpixel-based similarity index (SPSIM), to accu-
rately predict image quality. In this method, images are seg-
mented into visually meaningful regions, namely, superpixels.
Then, the mean values of the intensity and chrominance com-
ponents are extracted within each superpixel and compared
to describe local characteristics precisely. This procedure is
proposed to address the first problem. In addition to the two
similarity measures above, gradient similarity is employed to
improve the performance on structural variations. Furthermore,
in each superpixel, the regional consistency of gradient mag-
nitudes between reference and distorted images is measured.
This measure focuses on the overall changes of all gradients
in one superpixel and is used to improve the accuracy of the
three similarities. This process aims to solve the second and
third problems. Finally, texture complexity is utilized as local
weights to pool the pixel-wise similarity map into a single
score. The main contributions of our work can be summarized
briefly as follows: 1) we use superpixels, which is perceptually
more meaningful and accurate, to extract features and reflect
image characteristics; 2) the regional overall variations in
features are considered and utilized to revise feature similarity

P

Fig. 1. Illustration of the SLIC superpixel segmentation

measures. Experiments on four databases demonstrate that
SPSIM is superior to most existing methods in predicting
image quality.

The remainder of this paper is organized as follows. The
feature extraction and similarity measures are explained in
Section II. Section III describes the proposed IQA index.
In Section IV, the experimental results are presented and
analyzed. Finally, Section V concludes this work.

II. PROPOSED FEATURE EXTRACTION AND SIMILARITY
MEASURES

In this section, we analyze the extraction of features and the
similarity measures used in our IQA method. Many features,
such as mean, standard deviation, and covariance in SSIM,
linear correlation coefficient in the local linear model (LLM)
[20], and color component difference in [19], have been
utilized in IQA. A common point among them is that almost
all features are extracted from a square image patch centered
at a given pixel. These patches are convenient for computation
but are usually meaningless for visual perceptions. We believe
that extracting features from visually meaningful regions may
improve the performance of IQA algorithms. Superpixels may
play an important role in this regard.

A. Superpixel versus Image Patch
A superpixel is a perceptually meaningful region comprised

of spatial neighboring pixels. These pixels usually share many
common characteristics, such as similar colors, intensities or
structures, aside from spatial adjacency. These points make
superpixels a convenient and effective tool to compute image
features in image processing tasks [21]. In [22], superpixel
segmentation is used to compress images more efficiently than
traditional techniques. Liu et al. proposed to calculate the
inter-superpixel similarity, global contrast, and spatial sparsity
to generate a superpixel-level saliency map [23]. Superpixels
are also applicable to image decomposition [24], multisensory
video fusion [25], and image synthesis [26]. Many super-
pixel algorithms have been presented. In [27], superpixels
are generated by using a geodesic distance, which produces
small superpixels in structure-dense regions and large ones
in structure-sparse regions. Simple linear iterative clustering
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(a) Reference image (b) Distorted image

(c) Reference image (d) Distorted image

Fig. 2. Comparison of superpixel (the upper row) and image patch (the
lower row) in separating regions with different sensitivities to image blur. The
distorted image is obtained by degrading the reference image with Gaussian
blur. It can be observed that the superpixel well separates textured regions
(sensitive to Gaussian blur) and flat regions (insensitive to Gaussian blur)
while the image patch contains both textured and flat areas.

(SLIC) [21] firstly initializes a number of cluster centers
and each pixel is assigned to its nearest center according to
a predefined distance measure. Then each cluster center is
updated by the mean attributes of its corresponding elements.
Superpixels are produced by repeating these steps. Giraud
et al. proposed a fast method to compute superpixels by
considering the linear path to the superpixel barycenter in
designing distance measures [28]. In our work, we adopt the
SLIC method, which is computationally efficient and shows
leading adherence to image boundaries. Moreover, SLIC can
be easily implemented by simply setting the number of cluster
centers (Nc). We present an example of SLIC segmentation
in Fig. 1, where Nc = 400.

Extracting features from superpixels is beneficial. Since
image pixels in a superpixel are similar to each other in
colors and intensities, obtaining the low-level features such
as mean luminance is more accurate. We take the luminance
comparison of SSIM as an example. In SSIM, the luminance of
pixel P is calculated by the mean intensity of the pixels inside
the red square, as illustrated in Fig. 1. However, in superpixels,
luminance computation is performed on the pixels encircled
by the green line. The mathematical expressions of these two
methods are as follows:

LP =
1

|Cr|
∑

j∈Cr

Intensity(j) (1)

LP =
1

|Cg|
∑

j∈Cg

Intensity(j) (2)

where Cr is the set of pixels in the red square, Cg is the set
of pixels inside the green line, |Cr| denotes the number of
pixels in Cr, and |Cg| stands for the number of pixels in Cg .
Apparently, the second equation is more precise in describing
pixel luminance.

It is also convenient to analyze the peculiarities of image
areas with superpixels. In FR IQA, two peculiarities of HVS

are usually highlighted. First, textured areas are sensitive to
image blur but insensitive to Gaussian noise. Second, Gaussian
noise in flat areas is easy to be perceived, whereas image blur
is not. Based on above two observations, various strategies
have been employed to predict image patch quality [29-31].
For this type of FR methods, superpixels are superior to square
patches because they can separate image regions of different
styles with higher boundary consistency. Examples of textured
and flat regions using superpixels are presented in Figs. 2(a)
and 2(b), where the region encircled by the red line is a
textured area and the region encircled by the green line is a
flat part. This segmentation effectively separates two regions
with different sensitivities to image blur. For comparison,
the patch-based results are also provided in Figs. 2(c) and
2(d). The figures show that a square patch may contain both
textured and flat areas, which are common especially when the
patch is close to their boundaries. In this case, it is difficult
to evaluate the quality degradation. These examples verify
the good performance of superpixels in describing image
peculiarities. For this reason, the regional gradient consistency
and weights in Section III are computed with superpixels.

B. Superpixel Segmentation of Reference and Distorted Im-
ages

As introduced in Section I, FR IQA predicts the quality of a
distorted image with the reference image being available. For
these two images, superpixel generation can be performed in
three modes: segmenting the reference image and applying this
segmentation to the distorted image, segmenting the distorted
image and applying this segmentation to the reference image,
and segmenting the reference and distorted images separately.
In our work, we select the first mode, i.e., the distorted
image is segmented directly following the reference image.
The reason for this selection is that reference images are high-
quality images with invisible distortions. Their segmentations
are consistent with visual perceptions. On the contrary, dis-
torted images are degraded in various modes; hence, existing
superpixel algorithms (e.g., SLIC) cannot obtain a widely
accepted segmentation result, especially when these images
are seriously distorted by noise [32]. Therefore, we segment
the distorted image similarly to that of the reference image.

It is necessary to segment images into a reasonable number
of superpixels. A number of superpixels larger than 200
is generally sufficient for edge preservation [23]. Excessive
superpixels would lead to a high computational cost. There-
fore, we set Nc = 400, in which the number of generated
superpixels is between 250 and 400.

C. Superpixel Similarity: Luminance and Chrominance
Image luminance represents the brightness perceived by

HVS, and it is an important feature in predicting image quality.
Color, which is ignored in many conventional metrics, also
influences human perception about image quality and has
been increasingly emphasized in recent research [18] [19].
In this section, we present the luminance similarity and the
chrominance similarity between the reference image r and the
distorted image d from the viewpoint of superpixels.
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The process is as follows. Images r and d are firstly
segmented into many superpixels as described in Section II.
B. The intensity and chromatic components are then derived
by the YUV composition [33]. Using the Y component, the
luminance of the i-th pixel is estimated by the mean intensity
as follows:

Li =
1

|si|
∑

j∈si

Y (j)

where si is the superpixel that encloses the i-th pixel and |si|
is the number of elements in si. Then, we can compute the
pixel-wise luminance similarity as follows:

ML(i) =
2Lr(i)Ld(i) + T1

L2
r(i) + L2

d(i) + T1
(3)

where Lr(i) and Ld(i) represent the luminance of the i-th
pixel in r and d, respectively, and T1 is a positive variable
to avoid instability when L2

r(i) + L2
d(i) is extremely small.

Similarly, we can derive MU (i) and MV (i). The chrominance
similarity is the product of MU (i) and MV (i) as follows:

MC(i) = MU (i)MV (i) (4)

D. Pixel Similarity: Gradient
Luminance similarity and chrominance similarity can appro-

priately characterize low-level features. In other words, they
measure the overall impression when an image is perceived
by humans. As shown in Fig. 1, a superpixel is usually a
homogeneous area and structures or variations are widely
distributed in the boundaries of superpixels. The similarity
measures in Section II. C are powerless to reflect the impact of
structures. Gradient similarity can overcome this shortcoming.
Image gradient is calculated by differentiating pixel intensities,
and thus it can appropriately describe local structural changes.
Image gradient has been employed in many image processing
tasks, including FR IQA. For example, gradient serves as a
primary feature in FSIM, GSIM, GMSD, and VSI. In our
work, we exploit gradient information likewise to effectively
measure structural degradations. As suggested in [15], the
Prewitt operators are adopted to extract vertical and horizontal
image gradients, denoted by Gv(i) and Gh(i), where i stands
for the i-th pixel. Then, gradient magnitude is calculated as
G(i) =

√
G2

h(i) +G2
v(i).

Gradient similarity is defined as the similarity of gradient
magnitudes on each pixel between r and d as follows:

MG(i) =
2Gr(i)Gd(i) + T2

G2
r(i) +G2

d(i) + T2
(5)

where Gr(i) and Gd(i) represent the gradient magnitudes of
the i-th pixel in r and d, respectively. The role of T2 is similar
to that of T1. It is worthwhile to notice that the values of T1

and T2 greatly influence FR IQA. The selection of T1 and T2

will be discussed in the next section.

III. PROPOSED IQA METRIC

In this section, we explore the impacts of regional gradient
consistency (RGC) on quality assessment and revise the simi-
larity measures presented in Section II using RGC. Further, a

weighted pooling strategy is employed to process pixel-wise
similarity into a global quality score. The framework of the
proposed IQA metric is illustrated in Fig. 3, where superpixel-
based calculations are highlighted in red while pixel-wise
operations are in gray. The inputs r and d are initially
partitioned into many superpixels using the SLIC segmentation
of r and then decomposed into YUV components. With the
Y components, gradient magnitude is computed and RGC is
measured in each superpixel. Luminance, chrominance, and
gradient similarities are calculated subsequently in consider-
ation of RGC. Finally, the integration of these similarities is
obtained and a pooling operation is conducted to derive the
final quality score.

A. Regional Gradient Consistency

Digital images are composed of large numbers of pixels
[34]. A single pixel has no visual meaning, but a group of
pixels may present various textures and structures. When an
image is perceived by HVS, the information conveyed by these
pixels as a whole (namely, an image region) is more crucial
than that conveyed by individual pixels. However, in most
existing FR IQA models, image quality is commonly predicted
by the change of features on each pixel between reference
and distorted images, whereas the overall change of features
in an image region is ignored. For example, image gradient
is the primary feature in FSIM and GSIM, and the quality
is obtained by comparing pixel-wise gradients without any
consideration for regional gradient comparison. Incorporating
regional gradient comparison into aforementioned models may
improve their performance, given that image regions as a
whole are important for human visual perception. The pooling
strategy of GMSD can be considered as a special measure to
estimate the global gradient relationship of all pixels (the entire
image region). In [15], GMSD is obtained as the standard
deviation of gradient similarities on all pixels. The motivation
behind it is that if gradient similarities on all pixels are almost
the same, then GMSD is very small, which means high quality
for the test image. In other words, if image gradient changes in
a similar trend, then the predicted quality tends to be good. In
this sense, GMSD can be considered as a measure of the global
relationship between the gradients of r and d. The excellent
performance of GMSD demonstrates that incorporating the
regional feature relationship into an IQA scheme can improve
performance. Superpixels are used as image regions in our
work.

Since local structures are perceived by comparing the dif-
ferences of visual signals, similar variations may correspond
to similar structures. These variations can be captured by the
relationship of relative magnitude (RRM) of visual signals,
such as gradient or intensity. Here, RRM indicates the intensity
or gradient ranking of all pixels in a perceived image region.
With the gradient ranking as an example, two image regions
with similar RRMs generally share dominant structured and
flat parts analogously, which is of great importance in IQA
[35]. Due to the various patterns of image areas, we prefer
using the regional gradient consistency to compare the RRMs
of two regions rather than using the global relationship in
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Fig. 3. Framework of the proposed method. Blue boxes indicate inputs and output, red boxes correspond to computations performed in superpixels and the
others represent pixel-wise operations.

GMSD. For two image superpixels S′
r and S′

d with gradient
maps gr and gd, we propose to use the Spearman’s rank order
correlation coefficient (SROCC) of gr and gd to measure RGC
as follows:

RGC(S′
r, S

′
d) = SROCC(gr, gd)

= 1−
6
∑K

i=1 d
2
i

K(K2 − 1)

(6)

where di denotes the difference between the ranks of corre-
sponding gradient pair in gr and gd, and K is the number of
pixels in the superpixel. SROCC is a widely used standard in
IQA to measure the monotonicity of two datasets [36]. It can
accurately describe the similarity of RRMs of two gradient
maps. We present examples of RGC on images with different
distortions in Fig. 4, where the first two columns are the
reference and distorted images, the third column shows the
RGC maps computed with superpixels, and the last column
presents the signs of gradient differences (Gr and Gd denote
the gradient maps of r and d, respectively). The sub-caption
provides the mean opinion score (MOS) rated by humans and
the predicted score obtained by GSIM [13]. In the column
of RGC map, a darker pixel means a higher RGC. In the last
column, positive and negative signs are displayed by white and
black pixels, respectively. From Fig. 4, we can find that the
distorted image in Fig. 4(a) shares similar GSIM with those in
Figs. 4(b)-(c), whereas its MOS is much larger than those of
the other two. Therefore, the objective quality of the distorted
image in Fig. 4(a) is underestimated by GSIM, and a larger
MOS difference indicates a higher degree of quality underes-
timation. A same observation can be obtained from Fig. 4(d)
and Figs. 4(e)-(f), and a similar conclusion is achieved for the

distorted image in Fig. 4(d). At the same time, it is clear that
RGC maps of Figs. 4(a) and 4(d) are mostly covered with
dark regions, which indicate high RGCs. These observations
and analyses imply that the quality scores of images with
high RGCs predicted by GSIM are usually underestimated,
i.e., the distortions are overestimated. The reason is that large
RGCs generally indicate similar structures from the view of
image region, which exert a great impact on visual perception
but is ignored in most cases. In addition, the difference of
MOS between Fig. 4(a) and Figs. 4(b)-(c) significantly exceeds
that between Fig. 4(d) and Figs. 4(e)-(f), which indicates that
the distortion overestimation of Fig. 4(a) is more severe than
that of Fig. 4(d). This result may be ascribed to the gradient
difference signs in the last column, where Fig. 4(a) presents
most positive signs (increased gradients) while Fig. 4(d) shows
the opposite. Specifically, images with increased gradients and
high RGCs are usually enhanced images, which may present
good visual impressions but differ evidently from their original
versions in terms of features [37]. Therefore, the increase or
decrease of gradients (IDG), which can be calculated as

IDG(gr, gd) =
1

K

K∑

i=1

psgn(gd(i)− gr(i)) (7)

where psgn(x) returns 1 when x ≥ 0 and 0 otherwise, is
another important factor that influences quality assessment. If
IDG is close to 1, gradients are mostly increased; if IDG is
close to -1, gradients are mostly decreased. Other cases do not
indicate a strong variation trend. On the basis of this analysis,
we can classify distorted image regions into three types:

• type A: large RGC, large IDG, satisfying RGC ≥ τ0,
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(a) MOS=7.2143, GSIM=0.9735

(b) MOS=4.9286, GSIM=0.9711

(c) MOS=5.0714, GSIM=0.9774

(d) MOS=3.4878, GSIM=0.8905

(e) MOS=3.0476, GSIM=0.9153

(f) MOS=3.0714, GSIM=0.9102

Fig. 4. Comparison of RGC maps of images distorted by (a) contrast change (increment), (b) Gaussian noise, (c) JPEG, (d) contrast change (decrement), (e)
Gaussian blur, and (f) JPEG2000. In RGC maps, a darker region indicates a higher RGC; In the last column, a white pixel denotes the positive sign while a
black pixel stands for the negative sign.

IDG ≥ τ1; • type B: large RGC, small IDG, satisfying RGC ≥ τ0,
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IDG ≤ −τ1;
• type C: other cases;

For simplicity, we combine RGC in (6) and IDG in (7) to
calculate the indicator function (IF) of RGC as:

u0 = psgn(RGC(S′
r, S

′
d)− τ0)

u1 = psgn(IDG(gr, gd)− τ1)
u2 = psgn(−τ1 − IDG(gr, gd))
IFA(S

′
r, S

′
d) = u0u1

IFB(S
′
r, S

′
d) = u0u2

(8)

where τ0 and τ1 are thresholds, and u0, u1, and u2 are
temporary variables. Images constituted mostly by patches
from types A (IFA = 1) and B (IFB = 1) are usually
overestimated in terms of degradations, especially for type A.
Some modifications or compensations should be performed on
these images.

With the definition of feature similarity in Section II, we
can make T1 (and similarly T2) change adaptively with IFA

and IFB . When T1 is increased, the degradation indicated
by similarity measures declines, which can solve the problem
of distortion overestimation. Therefore, T1 and T2 can be
modified as:

T1(S′
r, S

′
d) = C1 + λ1IFA + λ2IFB

T2(S′
r, S

′
d) = C2 + λ1IFA + λ2IFB

(9)

where C1 and C2 are positive constants to avoid instability
in (3)-(5), and λ1 and λ2 are positive constants to avoid the
overestimation of distortions in types A and B, respectively. As
we have analyzed above, the overestimation of distortions is
more severe in type A than in type B. Thus, λ1 is much larger
than λ2 for a stronger capability to avoid this overestimation.

B. SPSIM Index
The IQA index can be calculated using the similarity mea-

sures in Section II and RGC-modified parameters in Section
III. A. With the superpixels that enclose the i-th pixel in r
and d denoted by Sr(i) and Sd(i), respectively, we can obtain
T1(Sr(i), Sd(i)) and T2(Sr(i), Sd(i)) with (9). Then, ML(i),
MC(i), and MG(i) are computed by substituting T1 and T2

to (3)-(5). Finally, the overall comparison is expressed as:

M(i) = MG(i)[ML(i)]
αeβ(MC(i)−1) (10)

where α and β are parameters to adjust the weights of
luminance and chrominance similarities. The exponential form
helps limit the influence of chromatic components because
HVS is more sensitive to achromatic variations than to chro-
matic variations [18]. Specifically, with 0 < x ≤ 1 and
0 < β < 1, we have 0 < xβ ≤ eβ(x−1) ≤ 1. Therefore, for
the same α and β, M(i) in (10) is less sensitive to chromatic
variations MC(i) because the exponential form makes it closer
to 1 than the power form does.

With pixel-wise measurement M(i), the global quality score
SPSIM can be calculated as:

SPSIM =

∑N
i=1 M(i)w(i)
∑N

i=1 w(i)
(11)

where N is the number of pixels, and w(i) denotes the weight
of the i-th pixel. In our work, we employ the difference of

texture complexity (TC) [38] as a local weight, which is a just
noticeable difference (JND) index incorporating the contrast
sensitivity function (CSF) and the contrast masking (CM)
effect. This index is effective in IQA tasks [30]. In [38], TC is
defined as the ratio of contrast intensity (CI) to structureness
(ST), where CI can be approximated by the standard deviation
[39] and ST can be computed as the kurtosis of pixel intensities
[40]. To be specific, we can obtain the TC of the i-th pixel in
r as:

CI(i) = std(Sr(i))

ST (i) = kurtosis(Sr(i)) + 3

TCr(i) =
CI(i)

ST (i)

where std(·) and kurtosis(·) mean calculating the standard
deviation and kurtosis, respectively. Different from [38], the
computations of CI, ST, and TC are based on superpixels in
this work. When TC is achieved in both the reference and
distorted images, w(i) can be given by

w(i) = e0.05fabs(TCd(i)−TCr(i)) (12)

where TCd(i) stands for the TC of the i-th pixel in d and
fabs(·) is the absolute operator.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed IQA metric is tested on four
commonly used databases and compared with several well-
known FR IQA methods.

A. Evaluation Databases and Criteria
Benchmark databases are necessary to evaluate the perfor-

mance of IQA methods. In general, Laboratory for Image and
Video Engineering (LIVE) [41], Categorical Subjective Image
Quality (CSIQ) [6], Tampere Image Database 2008 (TID2008)
[42], and Tampere Image Database 2013 (TID2013) [43] are
most widely used databases. In LIVE, five types of distortions,
namely, JPEG2000 compression, JPEG compression, white
noise, Gaussian blur, and fast fading channel bit errors, are
introduced to 29 reference images to obtain 779 distorted
images. A total of 116 subjects rate the image quality. CSIQ
contains 30 reference images and 886 distorted images with
six types of distortions, namely, additive white Gaussian noise,
additive pink Gaussian noise, contrast decrements, Gaussian
blur, JPEG2000, and JPEG. TID2008 is a large database
with 25 reference images and 1700 distorted images, and the
number of distortion types is 17. TID2013 is an extended
version of TID2008, in which 24 distortion types are applied,
and the number of distorted images is 3000. TID2013 is
currently one of the largest FR IQA databases with the most
types of synthetic distortions.

Four criteria calculated between prediction results and
human-rated scores, namely, Pearson’s linear correlation co-
efficient (PLCC), root mean squared error (RMSE), SROCC,
and Kendall’s rank order correlation coefficient (KROCC), are
utilized to compare the performance of different IQA metrics
[36]. Among them, PLCC and RMSE indicate the predic-
tion accuracy, and SROCC and KROCC show the prediction
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Fig. 5. Performance of SPSIM in terms of SROCC against τ on four
databases.

monotonicity. In most cases, the relationship between objective
results and subjective scores is nonlinear and a regression
between them is necessary to reduce this nonlinearity. In
our work, we adopt the logistic function [14] for nonlinear
regression as follows:

p = η1(
1

2
− 1

1 + eη2(q−η3)
) + η4q + η5

where q represents the results of an IQA method, p denotes the
regression values of q, and ηi(i = 1, 2, 3, 4, 5) are parameters
to be fitted. The method in [44] is helpful for computing these
parameters. After nonlinear regression, PLCC and RMSE can
be calculated using p and subjective scores. With regard to
SROCC and KROCC, they can be computed directly with
subjective scores and objective results of the IQA method.
Generally, an attractive IQA method usually presents high
PLCC, SROCC, and KROCC with a small RMSE.

B. Parameter Setting
In this work, four pairs of parameters are involved, including

τ0 and τ1 in (8), C1 and C2 in (9), λ1 and λ2 in (9), α and β in
(10). Among them, C1 and C2 are commonly used in existing
IQA models [14, 16] and are empirically set as C1 = 600
and C2 = 210. The other parameters are investigated in the
following part. It is noteworthy that when we study the current
parameters, the others remain unchanged.

Parameters τ0 and τ1 serve as the thresholds of RGC and
IDG. They are set as τ = τ0 = τ1 in our experiments for
simplicity. In Fig. 5, SROCC curves against τ on the four
databases are presented. We can find that for all databases,
the performance is stable when τ is in the interval [0.3, 0.8].
In our experiments, we set τ = 0.6.

The most important parameters are λ1 and λ2, which
influence the degree of reducing distortion overestimation. In
Fig. 6, we show the SROCC curves against λ1 and λ2 on the
four databases. In Fig. 6(a), λ1 is fixed as 40000 and λ2 ranges
from 0 to 2000. SROCC increases initially and then decreases
on databases TID2008 and TID2013. The overall performance
is optimal for these databases when λ2 is within the interval
[600, 1000]. In CSIQ, SROCC increases with λ2, but the rate
of increase is progressively small especially when λ2 ≥ 1000.
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Fig. 6. Performance of SPSIM in terms of SROCC against (a) λ2 and (b)
λ1 on four databases.

For better comprehensive performance on different databases,
we regulate the optimal λ2 in the interval [900,1000] (e.g.,
950). With regard to Fig. 6(b), the curve is obtained by varying
λ1 when λ2 = 950. It can be observed that a larger λ1 leads to
a higher SROCC on TID2008 and TID2013, but this trend is
not evident when λ1 ≥ 40000. Also, an overlarge λ1 may
result in failure in predicting the quality of over-enhanced
images, although this condition is usually ignored and not
reflected in current research and databases. Therefore, we set
λ1 = 40000 in our experiment. In summary, parameters λ1

and λ2 are fixed as 40000 and 950, respectively. It can be
observed that the value of λ1 significantly exceeds that of λ2,
which is consistent with our analysis in the end of Section III.
A.

The last two parameters, namely, α and β, adjust the weights
of luminance and color similarity measurements. Similar to pa-
rameters mentioned above, we further discuss their influences
on the performance of SPSIM. The results are shown in Fig. 7,
where NSROCC = 10× (SROCC−min(SROCC))1. It can
be observed that the optimal α and β of TID2013, TID2008,
CSIQ, and LIVE are in intervals [0.05, 0.09]×[0.35, 0.45],
[0.03, 0.07]×[0.30, 0.40], [0.01, 0.05]×[0.15, 0.30], and [0.03,

1SROCC is transformed into NSROCC on each database to make the
changes visible and distinguishable in the figures.
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Fig. 7. Performance of SPSIM in terms of SROCC against α and β on (a) TID2013, (b) TID2008, (c) CSIQ, and (d) LIVE.

TABLE I
PERFORMANCE COMPARISON OF FR IQA METHODS ON FOUR DATABASES

PSNR SSIM MS-SSIM VIF MAD IW-SSIM FSIMc GMSD LLM SPSIM

LIVE

SROCC 0.8756 0.9479 0.9513 0.9636 0.9669 0.9567 0.9645 0.9603 0.9608 0.9622
KROCC 0.6865 0.7963 0.8045 0.8282 0.8421 0.8175 0.8363 0.8269 0.8230 0.8271
PLCC 0.8723 0.9449 0.9489 0.9604 0.9675 0.9522 0.9613 0.9602 0.9578 0.9599
RMSE 13.360 8.9455 8.6188 7.6137 6.9073 8.3473 7.5296 7.6211 7.7678 7.6288

CSIQ

SROCC 0.8005 0.8756 0.9133 0.9193 0.9466 0.9213 0.9310 0.9572 0.9050 0.9440
KROCC 0.5984 0.6907 0.7393 0.7534 0.7970 0.7529 0.7690 0.8134 0.7238 0.7880
PLCC 0.7998 0.8613 0.8991 0.9277 0.9502 0.9144 0.9192 0.9542 0.9000 0.9344
RMSE 0.1576 0.1334 0.1149 0.0980 0.0818 0.1063 0.1034 0.0786 0.1232 0.0934

TID2008

SROCC 0.5245 0.7749 0.8542 0.7491 0.8340 0.8559 0.8840 0.8906 0.9077 0.9104
KROCC 0.3696 0.5768 0.6568 0.5860 0.6445 0.6636 0.6991 0.7090 0.7368 0.7374
PLCC 0.5309 0.7732 0.8451 0.8084 0.8308 0.8579 0.8762 0.8717 0.8971 0.8927
RMSE 1.1372 0.8511 0.7173 0.7899 0.7468 0.6875 0.6468 0.6565 0.5982 0.6046

TID2013

SROCC 0.6394 0.7417 0.7859 0.6769 0.7807 0.7779 0.8510 0.8045 0.9037 0.9044
KROCC 0.4696 0.5588 0.6047 0.5147 0.6035 0.5977 0.6665 0.6331 0.7209 0.7251
PLCC 0.7017 0.7895 0.8329 0.7720 0.8267 0.8319 0.8769 0.8542 0.9068 0.9091
RMSE 0.8832 0.7608 0.6861 0.7880 0.6975 0.6880 0.5959 0.6444 0.5277 0.5165

Weighted SROCC 0.6596 0.7942 0.8419 0.7645 0.8405 0.8403 0.8847 0.8675 0.9120 0.9186
Average KROCC 0.4870 0.6108 0.6616 0.6049 0.6702 0.6635 0.7101 0.7018 0.7381 0.7496

PLCC 0.6903 0.8140 0.8594 0.8261 0.8619 0.8649 0.8928 0.8856 0.9095 0.9145

0.07]×[0.25, 0.35]. In all databases, the optimal α and β are in
similar intervals, which is consistent with our knowledge that
luminance and chrominance changes are visually perceived
with certain weights in image quality perception. In this work,
α and β are fixed as 0.05 and 0.35, respectively. In our future
work, we would like to discuss the selections of α and β from
the perspective of psychovisual experiments.

C. Performance Comparison
We compare the proposed method with nine well-known

FR IQA approaches, namely, PSNR, SSIM, multi-scale SSIM
(MS-SSIM) [45], VIF, MAD, IW-SSIM, FSIMc, GMSD,
and LLM. The experimental results on the four benchmark
databases are shown in Table I, where the top three results in
each row are highlighted in boldface. Generally, the research
on FR IQA has made great progress. Many methods provide
accurate predictions about image quality on these four databas-
es, especially the newest models FSIMc, GMSD, LLM, and
SPSIM. Moreover, it can be observed that the performance of
the same FR method diminishes on databases from LIVE to
TID2013, which may be attributed to increasing numbers of
distortion types in these four databases. Meanwhile, the dis-
tribution of boldfaced figures in Table I shows that no method
performs best on all databases. VIF works effectively on LIVE.
MAD provides precise results on LIVE and CSIQ. FSIMc is
efficient on LIVE, TID2008, and TID2013. GMSD evaluates

image quality consistently with subjective scores on CSIQ
and TID2008. LLM performs effectively on TID2008 and
TID2013. The proposed method achieves the best outcomes
on TID2008 and TID2013 as well as the top three result on
CSIQ. To compare these models comprehensively, we present
the weighted average criteria at the bottom of Table I, where
the weight is defined as the number of distorted images in each
database. The weighted results show that our method obtains
the best overall performance. In Fig. 8, the scatter plots of
subjective scores and objective predictions by above methods
on TID2013 are shown. It can be observed that data points
of SPSIM are distributed more tightly along the fitted curve,
which verifies the capability of SPSIM to assess image quality
more consistently with human ratings.

To further compare the performance of those FR IQA
metrics, we conducted statistical significance tests, which are
commonly performed in the IQA research [15] [20]. The
outcomes are presented in Fig. 9, where a value of ‘1’ indicates
that the method in the row is statistically better than that in
the column and ‘0’ otherwise. It can be observed that on
the TID2008 and TID2013 databases, the proposed method
significantly surpasses all other approaches, except for LLM.
On the two other databases, only one model is significantly
better than the proposed method, that is, MAD on LIVE and
GMSD on CSIQ. In total, SPSIM achieves the value of ‘1’
27 times, followed by GMSD (24 times), LLM (22 times),
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Fig. 8. Scatter plots of FR IQA algorithms (a) PSNR, (b) SSIM, (c) MS-SSIM, (d) VIF, (e) MAD, (f) IW-SSIM, (g) FSIMc, (h) GMSD, and (i) SPSIM on
TID2013.

(a) (b) (c) (d)

Fig. 9. Results of statistical significance tests of the competing IQA approaches on the databases of (a) LIVE, (b) CSIQ, (c) TID2008, and (d) TID2013.
A value of ‘1’ (highlighted in green) indicates that the approach in the row is significantly better than the approach in the column, while a value of ‘0’
(highlighted in red) represents that the first approach is not significantly better than the second approach.

FSIMc (22 times), and MAD (22 times). This demonstrates
that the proposed method is superior to other models. Except
for SPSIM, FSIMc, GMSD, and LLM also obtain leading

performance. In some specific cases, they are competitive
with SPSIM, such as FSIMc on LIVE, GMSD on CSIQ,
and LLM on TID2008 and TID2013. However, this is only
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TABLE II
RESULTS OF SIGNIFICANCE TESTS OF FOUR METRICS

Database Significance tests results Rank of Metrics
LIVE SPSIM∼FSIMc SPSIM∼GMSD SPSIM∼LLM FSIMc∼SPSIM∼LLM∼GMSD
CSIQ SPSIM>FSIMc SPSIM<GMSD SPSIM>LLM GMSD>SPSIM>FSIMc>LLM

TID2008 SPSIM>FSIMc SPSIM>GMSD SPSIM∼LLM SPSIM∼LLM>GMSD∼FSIMc
TID2013 SPSIM>FSIMc SPSIM>GMSD SPSIM∼LLM SPSIM∼LLM>FSIMc>GMSD

TABLE III
SROCC OF SPSIM WITH FIXED T1 AND T2 ON TID2013

SROCC on TID2013 T2
100 250 400 550 700 850 1000

T1

100 0.8778 0.8808 0.8810 0.8803 0.8792 0.8780 0.8768
200 0.8787 0.8843 0.8860 0.8864 0.8864 0.8860 0.8854
300 0.8758 0.8824 0.8850 0.8862 0.8867 0.8867 0.8866
400 0.8719 0.8795 0.8827 0.8844 0.8853 0.8857 0.8858
500 0.8678 0.8762 0.8799 0.8820 0.8831 0.8838 0.8840
600 0.8638 0.8728 0.8770 0.8793 0.8807 0.8816 0.8818

valid in a few cases while SPSIM performs excellently in
the vast majority of instances. From the significance tests we
can find: 1) SPSIM is superior to FSIMc on CSIQ, TID2008,
and TID2013; 2) SPSIM achieves better performance than
GMSD on TID2008 and TID2013; 3) SPSIM predicts image
quality more accurately than LLM does on CSIQ. We show
the significance tests of the four metrics mentioned above
in a more conspicuous way in Table II, where ‘>’ means
that SPSIM is statistically better than the right-hand one, ‘<’
means that SPSIM is worse than the right-hand algorithm,
and ‘∼’ indicates no significant difference. In the column
of ‘Rank of Metrics’, if two metrics are not significantly
distinguishable, the one with higher SROCC is placed in front.
It can be easily found that SPSIM is superior to FSIMc
and GMSD in most cases. As for LLM, it employs a deep
learning based classification method, which depends heavily
on training data. Therefore, LLM performs excellently on
TID2008 and TID2013 (part as a training set) but produces
unsatisfactory results on CSIQ (4-5 percent lower in SROCC).
On the contrary, our method achieves top three results on
almost all databases. In all, the proposed method is superior
to others due to its excellent performance and universality. In
addition to the F-test, the significance tests using the Pitman
test [46] can also verify the superiority of SPSIM over other
IQA approaches.

D. Discussion about the Adaptive Selection of T1 and T2

In our work, T1 and T2 are adaptive to the regional overall
change of features. Additional experiments are conducted to
compare the performance difference between adaptive T1, T2

and fixed T1, T2. Results of the proposed method using fixed
values are shown in Table III, where experiments are con-
ducted on TID2013 with other parameters unchanged. From
Table III, we can find that SROCC increases initially when
T1 < 300 and then decreases when T1 > 300. Moreover, an
upward trend of SROCC is observed with the growth of T2, but
this trend is not evident when T2 > 850. The optimal SROCC
is approximately 0.8867, which is nearly 2 percent lower than
that of adaptive T1 and T2 (0.9044). This performance gap
demonstrates that using adaptive T1 and T2 is effective for

predicting image quality. Further, we test a special pair of fixed
T1 and T2, which is obtained by averaging all adaptive T1 and
T2 on TID2013. The outcomes are T1 = 1097, T2 = 1487,
and SROCC = 0.8737. This pair of T1 and T2 shares the
same mean values with the adaptive ones, but its performance
is inferior. This fact further verifies the superiority of adaptive
selection of parameters. Similar comparisons and conclusions
can be obtained on the three other databases.

TABLE IV
COMPARISON OF RUNNING TIME

IQA metric Running time (s)
PSNR 0.0023
SSIM 0.0155

MS-SSIM 0.0878
VIF 0.7329

MAD 20.5872
IW-SSIM 0.3812

FSIMc 0.2665
GMSD 0.0116
LLM -

SPSIM 0.2174

E. Computational Complexity
It is necessary to analyze the computational complexity of

an algorithm because the running time is crucial in many
real-time applications and systems. In Table IV, the running
time of several IQA metrics on a 384×512 image is listed.
Experiments are performed on a computer with Intel Core i7-
870 CPU@2.8 GHz and 8G RAM. The software platform is
Matlab R2013a. As shown in Table IV, PSNR and GMSD
are the fastest IQA approaches. The proposed SPSIM shows
a moderate running speed among all compared approaches.
Our method mainly involves three steps of operations, namely,
superpixel segmentation, feature extraction, and quality pool-
ing. Compared with other models, the only added part is the
operation of superpixel segmentation. In experiments, we find
that the time cost of superpixel segmentation is about 0.0621s
and this time can be reduced by off-line segmentation. In many
systems (e.g., image transmission and image compression),
the superpixel segmentation of the original image can be
conducted in advance. Since we segment a distorted image
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following its reference image, applying our method to predict
the quality of output images will save a lot of time, making
this approach highly practical in real applications.

V. CONCLUSION

This study proposes a new FR IQA method from the
viewpoint of superpixels. Based on the observation that visual
meaningful regions are beneficial for image quality assess-
ment, we segment reference and distorted images into many
superpixels. Then, mean values of luminance and chromatic
components are computed and compared in superpixels instead
of square patches to effectively reflect local characteristics.
Furthermore, we employ image gradients to characterize struc-
tural degradations. The comparisons of these three features are
further revised by superpixel-based RGC, which shows that
the quality of a distorted image is usually underestimated if
the RGCs between this image and its reference are generally
large. Finally, in order to obtain an overall quality score, a
weighting strategy utilizing texture complexity is adopted. The
experimental results on four databases demonstrate that our
method predicts image quality more consistently with human
assessment than most existing models do.
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