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Abstract. Using passive compliance in robotic locomotion has been
seen as a cheap and straightforward way of increasing the performance
in energy consumption and robustness. However, the control for such
systems remains quite challenging when using traditional robotic tech-
niques. The progress in machine learning opens a horizon of new possibil-
ities in this direction but the training methods are generally too long and
laborious to be conducted on a real robot platform. On the other hand,
learning a control policy in simulation also raises a lot of complication
in the transfer. In this paper, we designed a cheap quadruped robot and
detail a calibration method to optimize a simulation model in order to
facilitate the transfer of parametric motor primitives. We present results
validating the transfer of Central Pattern Generators (CPG) learned in
simulation to the robot which already give positive insights on the va-
lidity of this method.
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1 Introduction

The progress in machine learning within the last decades represents a great
opportunity for improving specific performance metrics in the robotics state-of-
art [4]. Among possible applications, locomotion constitutes an excellent exam-
ple as deterministic controllers are not well adapted to unknown terrains and
sensitive to external perturbations. Encouraging results involving complex gait
control policies using rich sensor information to increase adaptiveness and ro-
bustness in an unknown dynamic environment have been introduced in the past
years. Among the most influential contributions, deep reinforcement learning
techniques have shown the most important improvements [12/17]. However, the
works are mainly conducted in simulation, whereas the controllers embedded on
state-of-the-art robots are still mostly using sophisticated analytic methods with
explicit knowledge of the robot physical parameters, e.g in |2,/16,/18]. Indeed, di-
rect learning on a robot presents several drawbacks, among which the training
time —which can be generally sped up in a physics simulation—, the wearing and
hysteresis of mechanical parts, but also potential damages when the robot is
exploring its own motor control capacities.



Partial training of policies in simulation is a straightforward idea to obtain a
good initial state and avoid mechanical damage before transfer to a real robot.
This field, known as transfer learning, involves big challenges as a lack of accu-
racy and realism during the simulation can easily lead to a failure in the real
environment. However, simply using a more realistic simulator shifts the prob-
lem toward a sophisticated implementation of the physics engine and the need of
heavier computational resources. Despite efforts in this direction, there is still a
huge reality gap with the current simulators. Therefore, transfer in robotics has
mainly focused on making controllers robust to changing environments. Among
the recent related work, 5] shows how a quadruped locomotion gait, pre-trained
in one environment, can learn faster on other surfaces. For higher-level archi-
tectures and learning techniques, |6] presents a new neural network architecture
for transfer of reinforcement learning with various robotic tasks and [13] focuses
on locomotion using a hierarchical bio-inspired control architecture combining
recurrent networks for motor primitives using proprioceptive feedback together
with higher level feed-forward networks also processing visual information.

The embodiment theory, and in particular morphological computation in its
larger sense, i.e. as presented in [8] may be a preliminary solution to theorize the
transfer problem. In this framework, body, controller, and their intricate relation
are analyzed from a dynamical perspective. Each entity can be modeled as a
non-linear filter with computational skills rather than explicitly in a kinematic
parameter space. From that point of view, a good simulation works with an
accurate representation of the transfer functions rather than a detailed physics
implementation. This can be obtained through automated optimization rather
than fine-tuning of model parameters. Such an idea has been used for instance
with quadruped robots that refine their own body representation by matching
real and simulated sensors inputs [3]. With the trends in data-driven learning
techniques, an increasing number of studies also consider the simulated physics
as a black box with parametric equations, for instance using neural networks
[15]. However, this creates a problem with respect to interpretability and the
parametric calibration approach presented in this paper using a standard physics
engine and a parametric model represents a good compromise.

This paper introduces an automated calibration method for a simulation
model that enables optimal transfer of a controller to a mechanical platform. It
takes inspiration in morphological computation: rather than trying to replicate
rigorously the robot physics, we optimize a parametric model to maximize the
similarities between simulation and real world of the body sensor-to-actuator
transfer function. In the next section, the design and optimization methods are
discussed in further detail. The third section shows the results of two experi-
ments: the first concerns the calibration method and the second evaluates the
performance of an open-loop controller trained in simulation and transfered on
the real robot. Finally, conclusions and perspectives on the next research steps
are given in the last section.



2 Methods

2.1 The Robot

Mechanical Design The platform used in this project is an update of the
Tigrillo robot shown in Figure [1} It implements four under-actuated knee
joints, whose kinematic constraints can be manually tuned using detachable
springs and dampers to tune the passive compliance properties. A special effort
was applied to make it low-cost, versatile and reproducible. The robot weighs
950 g and fits in a box of 30 cm by 18 cm. The track widths are 15 cm in the
front and 11 cm between the hind legs and the distance between front and back
measures 16 cm, providing a stable balance with any configuration of slow gaits.
The legs are directly coupled to four Dynamizel RX-24F servomotors selected
as a compromise between weight, torque and fast rotation speed.

Fig.1: On the left, the quadruped Tigrillo robot used in this paper for exper-
iments on calibration and transfer of control. On the right, the corresponding
parametric simulation model in Gazebo.

The use of passive compliance in the knees in place of rigid constraints has
experimentally shown a decrease of the optimal cost of transportation but also
helps to obtain smoother behaviors in the overall locomotion process . The
same leg principles have been also presented in research involving robots like

Tekken @7 Puppy [1] or Bobcat .

Electrical Design Following the same constraints on reproducibility and cost,
the electronics stack is made from three off-the-shelf boards. First, a DC step-up
voltage converter supplies the other boards and motors with a 12 V regulated
voltage and a stalk current that can rise to 10 A when the legs are pushing
together and the motors have to deliver a high torque. Secondly, an OpenCM
board is used to read the analog sensor values and send the position or velocity
commands to the servomotors. The computer board is a Raspberry Pi 3 running
the Robot Operating System (ROS E and streaming actuation and sensor signals
to a computer over ROS topics.

! http://wiki.ros.org/
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Fig. 2: On the left, a close-up picture of the leg shows the direct coupling with the
Dynamizel motor and the non-actuated knee joint embedding the angle sensor.
On the right, the four sensor calibration functions are represented. Differences
in offset and shape of the curves come from the manual fixation of the magnet
and the Hall sensor.

Angle Sensors One important aspect regarding the application of the mor-
phological computation theory is to extract nonlinear feedback from the robot
compliant morphology [11]. To this end, permanent rare-earth magnets are at-
tached to the lower parts of each leg and analog Hall sensors to the higher
parts. The setup presents an advantage in cheapness and does not obstruct the
joint movement. This sensor is principally made of a semi-conductor triggered
by the Hall effect to output a voltage between 0 V and 5 V proportionally to the
surrounding magnetic field B. As a first approximation, this field is decreasing
with the cubic value of the distance to the magnet d. This length varies with
the square root of the cosine of the knee angle «, according to the generalized
Pythagorean theorem. As a consequence, the variation of the sensor voltage is
high for small angles and the order of magnitude for the best accuracy is around
a hundredth of a degree. It however decreases quickly with the knee angle to
reach approximately one degree when the legs are fully extended. For each leg,
a conversion table between the sensor value and the measured angle is used to
interpolate the transfer function of the sensor presented in Figure [2| All the
curves have a shape conform to the expected aspect but the manual fixation of
the magnet and the Hall sensor leads to a different offset for each leg.

2.2 Calibration of the Simulation Model

The approach followed in the calibration method consists in tuning a set of
simulation parameters in order to optimally match the simulated body’s response
to the real robot’s response as observed by the sensors, when an actuation signal



is applied. The simulation is performed in the Neurorobotics Platform (NRP) [7]
using Gazebo with the ODFE physics engine. We select the set of parameters 6
both for their importance in the locomotion behavior but also because they are
harder to measure or model accurately:

0 = {ki, kn, s, tn, dr, din, Maist, }- (1)

In this notation, the index f refers to the front legs of the robot and h refers
to the hind legs. The parameters k are the spring constants in the knee joints,
expressed in N/m. These parameters are chosen because the complexity of the
spring models in the physics engine is rather limited and can lead to insufficient
results, as discussed further in the Results section. The parameters d are the
contact depth coefficients expressed in m and represent how much two rigid
bodies can overlap during simulation to compute the friction forces. They directly
interfere with the static friction coefficients ;1 and a good manual tuning generally
requires empirical comparison with the real robot. Finally, the total mass of
the robot is fixed and determined by weighting the robot but the distribution
ratio between the front and the back is represented with mgis;. Many other
parameters like the damping values in the knee joints, the minimal value of knee
angles, the kinematic friction coeflicients of the feet and the motor characteristics
parameters have been evaluated in this research but none of them has shown
significant improvements with respect to the uncalibrated model. Therefore, they
are not discussed further in this paper. Figure [3| shows the architecture of the
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Fig.3: The calibration is represented on this diagram. Sensor values recorded
on the robot are used to optimize the unknown morphology parameters of the
simulation model with CMA-ES.

optimization process used for calibration. The robot is actuated in open-loop
with four sinusoidal signals a(t), with the same amplitude and phase for all
legs such that its body will alternate between standing-up and sitting-down.
The sensor values of the robot s,(t) are recorded to estimate the robot transfer
function:

S:(p) = F:(A(p)), (2)

where A(p) and S, (p) are the Laplace transforms of the robot motor and sensor
signals a(t) and s,(t).



An optimization is performed with covariance matriz adaptation evolution-
ary strateqy (CMA-ES), as formulated in [10]. It has the advantage to converge
rapidly in a landscape with several local minima and requires only few initializa-
tion parameters. The algorithm generates simulation models with different sets
of parameters and estimates the one that minimizes the error:

6 = arg mein £(0). (3)

The error function £(0) is chosen to represent the difference between two tem-
poral signals but shall also allow invariance against a possible slight phase shift.
This invariance can be obtained by computing the Mean Absolute Error (MAE)
for different configurations where the robot sensors signal s,(t) and the simula-
tion sensors signal s4(¢) are shifted within a time window, and finally taking the
minimum error:

| Ntk
— mi 3 0
£0) = keoMM] N P abs(8ri = 84,1), )

where N is the number of samples measured for the two signals during a period
T, and M is the boundary of the shifting window. The errors for each sensors
are simply added to obtain the final total error value.

Finally, it is assumed that the parameter set that is obtained in the opti-
mization corresponds to a good approximation of the robot transfer function:
F8 ~F. (5)

S

In order to decrease the noise on the sensors, which is caused by different factors
like some electro-magnetic perturbations or the undesirable residual vibration
coming from the motors, the signal is segmented using the zero-crossing of the
periodic actuation signal as a threshold. All the sensors segments are then pro-
jected on a one-period domain with a fixed number of points to be easily averaged
and compared (see Figure.

3 Results

3.1 Calibration of the Simulation Model

To apply the calibration method in practice, the robot is actuated by a 0.3 Hz
sine wave during one minute and the real motor signals and the sensor signals are
recorded during the last 50 seconds, to provide a reference for the optimization.
After this step, a CMA-ES algorithm is run on a computer. Different initializa-
tion values were tested but a low variance was observed in the results. For each
algorithmic epoch, a population of 10 individuals is generated: each of them has
a different morphology sampled in the distribution of 6 provided by CMA-ES
and is simulated with the same actuation pattern as the real robot. The opti-
mization evolution presented on Figure [b] shows a saturation of the MAF error
to 0.5 after more than 500 generations.
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Fig.4: An overview of the optimization method evolution.

To validate qualitatively this optimum, the Neurorobotic Patform (NRP) is
used to control together the simulation model and the real robot. A variety of
actuation sinusoids with different amplitudes are applied on the motors. A visual
comparison indicates a good correlation between the simulation and the real
observation&ﬂ Interestingly, failures like stumbling or falling are also observed
simultaneously in both worlds which is very useful as the role of pre-training in
simulation is to exclude actuation patterns that lead to instability of the physical
robot.

To explain these results, a single sine wave of 2 Hz —the same as during
the optimization— is given to the motors. The average sensor signals over one
period are plotted for the real robot, the optimum morphology in simulation
and the initial default morphology in simulation (see Figure . The latter
model is made with our best knowledge of the robot mechanical parameters and
simulator parameters and serves as a baseline. A comparison of the parameters
before and after optimization is also given in Table [I} It is quite obvious on
the figure that the signals from the optimized morphology are closer to the
observation on the robot. This has certainly two major causes. First, the default
parameters are unable to reproduce correctly the friction forces between the
feet and the ground. This effect depends both on the friction coefficient p but
also the contact depth between two rigid bodies in simulation, which has no
concrete meaning in the physical world. During testing, when the robot lifts
its body off the ground, the Center of Gravity (CoG) move forward above the
supporting point of the front feet. The feet suddenly slide on the ground and the
knee angle value drops before to increase again when the robot moves back to the

% https:/ /youtu.be/CqpkC630fJA



ground and the CoG is shifted backwards. This phenomenon is observed on both
the real robot and the optimized model but not with the default parameters.
Another reason concerns the spring stiffness, which seems too low for the default
morphology although it has been fixed by actual measurement on the robot.
This is induced by the limitation of the simulator which only allows to model
the physical spring via an equivalent torsional spring linear model in the joint.
For low spring values, the model is quite accurate but for higher values, the
non-linearities induce a saturation on the real robot which cannot be simulated
consistently. The optimization copes with this problem by converging on a larger
stiffness in the hind legs as displayed in Table

Morphology Parameters Non-Optimized Optimized
Hind Contact Depth Coefficient (mm) 0.5 7.8
Hind Friction Coefficient p 0.1 0.000819
Hind Spring Stiffness (N/m) 181.6 440.629
Hind Mass (kg) 0.238 0.276
Front Contact Depth Coefficient (mm) 0.5 3.8
Front Friction Coefficient p 0.1 0.283
Front Spring Stiffness (N/m) 181.6 181.4691
Front Mass (kg) 0.712 0.674
Mean Absolute Error 3.231 0.483

Table 1: This table shows the calibrated morphology parameters before and
after optimization. If the mass distribution and the front spring stiffness does
not change significantly, the hind knee joints become much stiffer to counteract
the spring saturation on the real robot and the friction with the ground decreases
in the front and increases in the back to render correctly the general movement.

3.2 Validation with Open-loop Gaits

In order to corroborate the preliminary observations on the calibration method
described in the last section, different open-loop controllers are trained in simu-
lation and we observe how the transfer performs on the real robot.

The controller is modeled by four coordinated CPGs with the equations intro-
duced in |19]. Constraints on the frequency and the phases between the different
legs are added to obtain motor primitives for walking and bounding gaits at 1
Hz. The other CPG parameters are obtained with a CMA-ES optimization with
the optimized simulation model and where the robot speed is used as a score.
This optimization has been successfully conducted in previous research [20] and
helps to explore the motor space to find the most stable gaits to locomote along
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a straight line. The resulting controller does not make use of sensor inputs and
only the actuation and the robot mechanical properties are discussed hereafter.
Some videos can be also found onlin€E| to get a better understanding of the
locomotion behavior.

Bounding gait To come up with a bounding gait, a constraint is added on the
CPGs phases such that the hind legs are going through stance and swing phases
synchronously and the front ones as well. This gait is inherently very stable as it
does not involve any movement perpendicular to the walking direction. Figure [5b|
compares the value of the knee angle on a the real robot as well as the simulation
default and optimized models. The optimization introduces better value ranges
for the legs but also much more homogeneous results as highlighted by the larger
variance of the non-optimized signal. However, it seems that the simulation fail
to render the fast transition measured on the robot for both models. In future
work, the optimization process should involve higher frequencies to solve this
issue.

Walking gait These gaits are not especially stable as no efforts were made to
optimize the robot’s balance in the lateral axis and the robot does not allow
feet retraction during locomotion. However, some correct gaits are obtained by
optimizing the CPG parameters whilst setting the same phase for the legs diag-
onally opposed. In leads to good performance on the real robot, and the knees
angles outlined by the blue curve on Figure [bc| are correctly simulated with the
optimized robot model. A phase shift of approximately 100ms can be explained
by the delay introduced by the communication line and the motor inertia. No
results could be collected on the non-optimized model for this specific gait, as
the robot directly felt on the ground in the simulator. This is not surprising as
the controller was optimized using the calibrated model but indicates a good
correlation between optimized model and real robot that does not exist with the
default model.

4 Conclusions and Future Work

This paper investigated a method to calibrate the simulation model of a cheap
passive compliant quadruped robot called Tigrillo, in order to transfer efficiently
motor primitives learned in simulation.

To derive a usable model of the mechanical platform, it was not chosen to
tune them manually but rather to use morphological computation framework to
calibrate a parametric simulation model with optimization techniques. From the
first observations, this method resulted in a simulation model that can achieve
better performance. It also reduces the amount of knowledge and hypothesis that
have to be given in the design process. This method has enabled the transfer of
parametric CPGs for walking and bounding gaits trained in simulation to the

3 https:/ /youtu.be/zCHRWxfoOMU



real platform while keeping a realistic behavior compared to the observations in
the simulated environments.

In further work, this approach should be generalized for a larger range of ac-
tuation frequencies to get a more significant optimization score. Also, the transfer
could be characterized against other relevant metrics like robot trajectory, pitch
or foothold pattern. Finally, the training and transfer of closed-loop motor prim-
itives should also be investigated on the Tigrillo platform to enable research on
higher-level models.

Acknowledgments

This research has received funding from the European Unions Horizon 2020
Framework Programme for Research and Innovation under the Specific Grant
Agreement No. 720270 (Human Brain Project SGA1).

References

1. Aschenbeck, K.S., Kern, N.I., Bachmann, R.J., Quinn, R.D.: Design of a quadruped
robot driven by air muscles. In: Biomedical Robotics and Biomechatronics, 2006.
BioRob 2006. The First IEEE/RAS-EMBS International Conference on. pp. 875—
880. IEEE (2006)

2. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., de Pieri, E.R., Caldwell, D.G.: A
reactive controller framework for quadrupedal locomotion on challenging terrain.
In: 2013 IEEE International Conference on Robotics and Automation, ICRA. pp.
2554-2561 (2013)

3. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118-1121 (2006)

4. Connell, J.H., Mahadevan, S.: Robot learning, vol. 233. Springer Science & Business
Media (2012)

5. Degrave, J., Burm, M., Kindermans, P., Dambre, J., wyffels, F.: Transfer learning
of gaits on a quadrupedal robot. Adaptive Behaviour 23(2), 69-82 (2015)

6. Devin, C., Gupta, A., Darrell, T., Abbeel, P., Levine, S.: Learning modular neural
network policies for multi-task and multi-robot transfer. In: 2017 IEEE Interna-
tional Conference on Robotics and Automation, ICRA. pp. 2169-2176 (2017)

7. Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Tieck, J.C.V.,
Hinkel, G., Kaiser, J., Peric, I., Denninger, O., Cauli, N., Kirtay, M., Rénnau, A.,
Klinker, G., Arnim, A.V., Guyot, L., Peppicelli, D., Martinez-Cafniada, P., Ros, E.,
Maier, P., Weber, S., Hubert, M., Plecher, D.A., Rohrbein, F., Deser, S., Roitberg,
A., van der Smagt, P., Dillmann, R., Levi, P., Laschi, C., Knoll, A.C., Gewaltig,
M.: Connecting artificial brains to robots in a comprehensive simulation framework:
The neurorobotics platform. Frontiers in Neurorobotics 2017 (2017)

8. Fiichslin, R.M., Dzyakanchuk, A., Flumini, D., Hauser, H., Hunt, K.J., Luchsinger,
R.H., Reller, B., Scheidegger, S., Walker, R.: Morphological computation and mor-
phological control: Steps toward a formal theory and applications. Artificial Life
19(1), 9-34 (2013)

9. Fukuoka, Y., Kimura, H., Hada, Y., Takase, K.: Adaptive dynamic walking of a
quadruped robot tekken on irregular terrain using a neural system model. In: 2003



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

IEEE International Conference on Robotics and Automation, ICRA. vol. 2, pp.
2037-2042. IEEE (2003)

Hansen, N.: The CMA Evolution Strategy: A Comparing Review, pp. 75-102.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

Hauser, H., Ijspeert, A.J., Fiichslin, R.M., Pfeifer, R., Maass, W.: The role of feed-
back in morphological computation with compliant bodies. Biological Cybernetics
106(10), 595-613 (2012)

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y.,
Erez, T., Wang, Z., Eslami, S.M.A., Riedmiller, M.A., Silver, D.: Emergence
of locomotion behaviours in rich environments. CoRR abs/1707.02286 (2017),
http://arxiv.org/abs/1707.02286

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T.P., Riedmiller, M.A., Silver, D.: Learn-
ing and transfer of modulated locomotor controllers. CoRR abs/1610.05182 (2016),
http://arxiv.org/abs/1610.05182

Khoramshahi, M., Sprowitz, A., Tuleu, A., Ahmadabadi, M.N., Ijspeert, A.J.: Ben-
efits of an active spine supported bounding locomotion with a small compliant
quadruped robot. In: 2013 TEEE International Conference on Robotics and Au-
tomation, ICRA. pp. 3329-3334. IEEE (2013)

Martius, G., Lampert, C.H.: Extrapolation and learning equations. CoRR
abs/1610.02995 (2016), http://arxiv.org/abs/1610.02995

Park, H., Wensing, P.M., Kim, S.: High-speed bounding with the MIT cheetah 2:
Control design and experiments. The International Journal of Robotics Research
36(2), 167-192 (2017)

Peng, X.B., Berseth, G., Yin, K., van de Panne, M.: Deeploco: dynamic locomotion
skills using hierarchical deep reinforcement learning. ACM Trans. Graph. 36(4),
41:1-41:13 (2017)

Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain
quadruped robot. IFAC Proceedings Volumes 41(2), 10822 — 10825 (2008)
Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control
of quadruped locomotion. In: 2008 IEEE International Conference on Robotics and
Automation, ICRA. pp. 819-824 (2008)

Urbain, G., Degrave, J., Carette, B., Dambre, J., wyffels, F.: Morphological prop-
erties of mass-spring networks for optimal locomotion learning. Frontiers in Neu-
rorobotics 2017 (2017)

Willems, B., Degrave, J., Dambre, J., wyffels, F.: Quadruped robots benefit from
compliant leg designs. Presented at the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (2017)


http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1610.02995

	Calibration Method to Improve Transfer from Simulation to Quadruped Robots

