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Abstract—Lane marking detection is a fundamental but crucial
step in intelligent driving systems. It can not only provide relevant
road condition information to prevent lane departure but also
assist vehicle positioning and forehead car detection. However,
lane marking detection faces many challenges, including extreme
lighting, missing lane markings, and obstacle obstructions. Re-
cently, deep learning-based algorithms draw much attention in
intelligent driving society because of their excellent performance.
In this paper, we review deep learning methods for lane marking
detection, focusing on their network structures and optimization
objectives, the two key determinants of their success. Besides,
we summarize existing lane-related datasets, evaluation criteria,
and common data processing techniques. We also compare the
detection performance and running time of various methods, and
conclude with some current challenges and future trends for deep
learning-based lane marking detection algorithm.

Index Terms—Lane marking detection, Traffic dataset, Deep
network, Objective function, Evaluation metric.

I. INTRODUCTION

HE emergence of vehicles has liberated human feet

from long journeys. In a modern society where almost
every household has a car, people enjoy the convenience of
travel, but also face many traffic hazards. To help make the
driving safer and more intelligent, intelligent driving uses
various sensing and detection equipment along with advanced
algorithms to acquire, process and analyze the collected data
promptly, so that driver can be alert to potential dangers and
vehicles can be controlled automatically [1].

Various learning-based methods are widely used for their
flexibility of handling complex scenes in modern intelligent
transport systems [2], [3], and recent deep learning techniques
further add wings to the development of intelligent driving.
They gain immense success in reinforcement learning, unsu-
pervised learning, supervised learning and their hybrids [4].
Various types of deep learning algorithms play their advan-
tages in all aspects of intelligent driving. Generally speaking,
deep reinforcement learning is the product of combining deep
learning and reinforcement learning [5], [6]. Deep unsuper-
vised learning refers to solving various problems based on un-
labeled training samples. It includes generative deep structures
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[7], such as autoencoder [8], [9], deep belief networks [10]-
[12] (including Boltzmann machines) and Generative Adver-
sarial Networks (GAN) [13], [14]. Deep supervised learning
with labeled samples has achieved great success on Euclidean
data and sequential data with Convolution Neural Network
(CNN) [15]-[17] and Recurrent Neural Network (RNN) [18],
[19], respectively, and supervised learning directly on various
non-Euclidean data structure with Bayesian deep learning also
arouses much attention [20].

Intelligent driving consists of a series of systems, such
as adaptive cruise control, lane departure warning system,
and lane-keep assistance. As a top priority of these systems,
the safety in intelligent driving needs to be addressed from
various technical aspects, such as road detection, lane marking
detection, vehicle detection, and collision avoidance [21].
Therefore, lane marking detection plays a crucial role in
intelligent driving.

As a task similar to lane marking detection, lane detection
places more concerns on the lane in which the vehicle is
currently traveling [22]. In actual driving, it is not enough to
detect only the current lane situation. Lane marking detection
extends the detection range from the current lane to the entire
field of view. Drivers can use the lane marking detection results
to understand the wider driving environment, thus preparing
for dangerous road conditions such as sharp turns that may
occur soon. Lane marking detection is also the foundation of
many intelligent driving missions. No matter it is to predict the
vehicle’s moving trajectories [23] or to detect front vehicles
[24], [25], lane marking detection can always act as an aid.
In addition to intelligent driving, lane marking detection also
contributes to robot navigation [26] and provides auxiliary
information for visually impaired people’s motion [27].

Unlike generic targets, lane markings occupy only a small
but widely distributed proportion of the scene. Interference
due to poor illumination, occlusion and similar textures makes
the already challenging lane marking detection more difficult.
There have been many approaches to lane marking detection,
which can be categorized into handcrafted feature-based meth-
ods and deep learning methods.

Before the advent of large lane marking detection datasets,
lane marking detection relies mainly on handcrafted feature-
based methods. [28], [29] summarize these techniques from
three aspects: preprocessing, feature extraction and curve
fitting. The purpose of preprocessing is to filter out unwanted
interference in the image. Color space conversion and filters,
such as grayscale conversion [30], Y C,C),. chromaticity space
conversion [31], mean filter and directional controllable filter
[32], are often used for preprocessing. To extract lane marking
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Fig. 1. Detection performance of different methods in various scenarios.
Columns (different methods): (a) images; (b) results from a handcrafted
feature-based method using color features, edge features and statistical
histogram features; (c) results from Spatial Convolutional Neural Network
(SCNN) [38]; (d) ground truth. Rows (different scenarios): (I) normal; (II)
curve; (IIT) complex texture; (IV) shadow; (V) illumination; (VI) branch.

features, many established operators are applied, for example,
SIFT [31] and Canny [33], [34]. After the lane marking is
initially detected based on the features, a series of fitting
methods are used to refine the results. Commonly used fitting
methods include Hough transform [34]-[36] and B-spline
fitting [37]. These handcrafted feature-based methods have
simple algorithms and fast detection. However, as shown in
Fig. 1, handcrafted feature-based methods only achieve the
desired performance when lane markings are obvious. When
facing complex road conditions, these methods can no longer
meet the requirements of accurate detection due to the lack of
robustness of the features.

Compared with the methods using handcrafted features,
deep learning methods can automatically extract the desired
features that conform to the lane marking, obtaining better
detection results in the face of occlusion and lane marking
defects, etc. There are three main reasons for this: first, through
learning from a large amount of data, deep learning can extract
the features that are more conducive to achieving lane marking
detection in various environments. Secondly, with sophisti-
cated designs of network architectures, deep networks can
extract effective features. Finally, by constructing optimization
objective functions with appropriate constraints, deep networks
can selectively learn the representation of relevant categories.

In more challenging scenarios, the deep learning method
can extract discriminative features of lane markings in a data-
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driven manner and has achieved superior performance. This
has also led to the emergence of larger datasets of traffic
scenes. Consequently, more and more deep learning meth-
ods are developed for lane marking detection. However, the
early surveys of lane marking detection focus on handcrafted
feature-based methods as well as related hardware platforms,
such as [28], [29], and the reviews of deep learning methods
specifically developed for lane marking detection are scarce.
[39], [40] focus on the system construction with learning-
based lane marking detection methods briefly introduced.
For the success of deep learning methods, the designs of
network structures and optimization objectives are two critical
determinants. Therefore, in this paper, we review deep learning
methods in lane marking detection by focusing on the network
structures and optimization objectives. Different from [41],
which studies the network structure of each algorithm, we
also provide an in-depth analysis of the existing lane marking
detection algorithms and explore the motivations behind the
designs of different algorithms from the key problems that
need to be solved in this field. A comparison of the mentioned
surveys is summarized in Table 1. Our survey covers the latest
and representative deep learning techniques and deep neural
networks for lane marking detection, including publications
from journals, conferences and arXiv.

The rest of the survey is organized as follows. Section II
summarizes the datasets used for lane marking detection.
The commonly used optimization objectives are presented
in Section III. The development of lane marking detection
networks is elaborated in Section IV. Section V introduces data
processing techniques, evaluation metrics and performance
comparison of the methods. The discussion of challenges
and future work in lane marking detection is presented in
Section VI. Finally, conclusions are in Section VII.

II. LANE LINE DETECTION DATASETS

Current deep learning methods rely on a large amount of
training data. With the advances of deep learning in intelligent
driving, many datasets of traffic scenes have also emerged.
In this section we introduce six major datasets for various
intelligent driving tasks, then some datasets specifically for
lane marking detection, and finally a summary and comparison
of the characteristics of these datasets.

A. Traffic scene datasets

In addition to lane marking detection, vision-based autopilot
includes many subtasks, such as traffic scene semantic segmen-
tation, road sign detection and pedestrian detection. Several
major traffic scene datasets are summarized below.

KITTI [69] is the largest dataset in autopilot scenarios, used
to evaluate the performance in various computer vision tasks
including optical flow, visual ranging, 3D objects detection
and tracking. The real data collected in KITTI comes from
urban, rural and highway scenes. In addition to as many as 15
vehicles and 30 pedestrians in each picture, there are various
levels of occlusion and truncation. This dataset contains some
scenes encountered during the actual driving process. There
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TABLE I
EXISTING SURVEYS RELATED TO LANE MARKING DETECTION. LPY DENOTES THE LATEST PUBLICATION YEAR OF COVERED PAPERS.
Survey (Publication Year) | Number of Covered Papers (LPY) | Key Words Remarks
(2013) 186 (2012) Detection systems Discussed handcrafted based methods and related hardware platforms
(2014) 65 (2010) Functional building blocks Focused on sensing modalities and full detection system
(2018) 112 (2017) Algorithms, integration and assessment | Briefly introduced the lane marking detection algorithms based on deep learning
(2018) 91 (2017) Lane departure warning Briefly introduced the lane marking detection algorithms based on deep learning
(2020) 96 (2019) Lane marking detection Sorted algorithms according to network structure
et . Comprehensive survey and in-depth analysis of lane marking detection algorithms,
ours (2021) 114 2021 Lane marking detection also including key problems, datasets and ev: i hods in this field
TABLE II
CONTENT COMPARISON OF LANE MARKING DATASETS.
KITTI road | BDDI0OK | CityScape | ApolloScape | Mapillary | CamVid | Caltech Lanes Tusimple CULane VPGNet | LLAMAS | CurveLanes | DET
Number of pictures (frames) 579 100,000 5,000 143,906 19,035 182 1,225 6,498 133,235 21,097 100,042 150,000 5424
Year 2013 2018 2016 2018 2017 2008 2008 2017 2017 2017 2019 2020 2020
Multiple scenes yes yes no no yes no no no no no no yes yes
Multiple cities no yes no no yes no no no no no no no no
Multiple weather no yes no yes yes no no no yes yes yes yes no
Multiple moments no yes no no yes no no no yes yes yes yes no
Multiple line types yes yes no no no no no no no yes yes yes yes
Lane marking labeling yes yes no yes yes yes yes yes yes yes yes yes yes
[38] [#2] [43] [44] 381 [#2] [+3]
~itation (in thi [45] [46] [421 [43] none [471 none [48] [491 [501 [STT[501 [52] [531 [54] | [#9] [50] [52] [55] [551 [561 471 511 none
Citati thi Ve
iation (in this survey) G700 | [581152) [59] [60] [611[62] [63] | [47] [61] [62] [64]
1651 [56] [66] [641 [67] | [66] [67] [65] [68]
TABLE III
SETTING COMPARISON OF LANE MARKING DATASETS.
KITTI road BDDI00K CityScape ApolloScape Mapillary CamVid Caltech Lanes Tusimple CULane VPGNet LLAMAS CurveLanes DET
Grayscale Cameras Color Cameras Color Cameras Dynamic
Collection Device Color Cameras Color Cameras | Color Cameras Color Cameras Color Cameras | Color Cameras | Color Cameras | Color Cameras | Color Cameras + Color Cameras Vision
Laser Scanner Laser Scanner LiDAR Maps Sensor
Resolution 1242 x 375 1280 x 720 2048 x 1024 3384 x 2710 900million(average) 960 x 720 640 x 480 1280 x 720 1640 x 590 640 x 480 1276 x 717 2560 x 1440 1280 x 800
Pixel level Key Key Key Key Key Key
Annotation + point Pixel level Pixel level Pixel level Pixel level point point point point Pixel level point Pixel level
Rectangle i i i i

are some lane markings in KITTI, but the segmentation labels
for the lane lines are missing.

BDD100K [70] is the largest and most diverse open driving
dataset, containing 100,000 videos of more than 100 million
frames. By taking keyframe samples for the 10th second of
each video, 100,000 images are obtained and labeled. Marked
content includes road target, road target classes, travelable area
and lanes of multiple cities. Lane marking data in a variety of
roads and lighting conditions are covered.

CityScape [71] is a semantic segmentation dataset that
focuses on urban streetscape understanding. It contains various
street views from 50 cities in different seasons. CityScape has
a wealth of metadata (front and rear video frames, stereo, GPS
and vehicle odometers), which can be used for pixel-level,
instance-level and panoramic semantic segmentation. In the
training set, 5,000 images are with high-quality annotations,
and the rest 20,000 images are coarsely annotated. But there
is no specific label for the lane marking.

ApolloScape' uses a mobile LiDAR scanner to collect
point clouds from Reigl, which produces a precise and dense
point cloud, making this dataset more accurate than KITTI,
CityScape and BDD100K. ApolloScape was collected from
four regions of two cities in China, providing streetscape
images in a variety of weather conditions during the day.
The traffic conditions and environment in the images are
complicated. In addition to the lane markings, the dataset also
includes images segmented by semantics such as perception,
simulation scenes and road network data.

Mapillary’ contains 25,000 high-resolution streetscape im-
ages covering a variety of weather conditions (sun, rain, snow,

Uhttp://apolloscape.auto/index.html
Zhttps://research.mapillary.com/

fog, haze) and all-day lighting changes (dawn, day, dusk,
night). Its annotations are five times finer than CityScape and
contain markings for lane markings.

CamVid [72] is the first video collection with object-
class semantic tags with metadata. It provides pixel-level lane
marking annotations, but with only a few hundred images, very
small compared with the databases aforementioned.

B. Datasets for lane marking detection

Sometimes general traffic scene datasets cannot meet the
needs of lane marking detection. Therefore many datasets have
been specifically constructed for lane marking detection.

Caltech Lanes® includes four clips taken on streets near
Pasadena, California at different times of the day. This dataset
is an early dataset for lane marking detection. Its image
resolution is low and the magnitude is not large.

Tusimple* is larger and with higher image resolution com-
pared with the Caltech dataset. Its content comes from the
driving situation on the highway, including different levels of
occlusion, different types of lane markings and different road
conditions. It contains different traffic conditions throughout
the daytime in moderate weather. The difficulty level of
detection is general. There are 3,626 sequences of images.
Each sequence contains 20 consecutive frames collected in one
second and the 20th is labeled with the lane marking ground
truth.

CULane [38] includes traffic conditions in Beijing at dif-
ferent times of the day, and its size is 20 times that of
the Tusimple dataset. In addition to having different weather

3http://www.vision.caltech.edu/malaa/datasets/caltech-lanes/
“https://github.com/TuSimple/tusimple-benchmark/issues/3
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conditions and lighting levels, there are eight challenging
lane marking detection scenarios, such as traffic congestion,
shadow occlusion, lane marking missing and curved lane
lines. This is currently the largest and challenging dataset
specifically for lane marking detection.

VPGNet [55] was associated with the methods proposed to
use the vanishing point to predict the lane marking. In addition
to vanishing point labels, various types of lane markings and
road signs are marked in detail. This dataset includes varying
degrees of rainfall and nighttime images, which is challenging
due to severe weather and extreme lighting conditions.

LLAMAS [73] is an unsupervised labeled lane marking
dataset using automatically created maps to project markers
into the image space, and it relies on sample-based optimiza-
tion to improve the accuracy of the label. Unlike other datasets,
the number of pixels marked on each lane marking is small
and varies with the distance and position of markings, making
LLAMAS more challenging and realistic.

CurveLanes [73] has more than 90% images containing
curve lane lines, which compensates for the lack of curve
scenes in previous datasets.

DET [74] uses Dynamic Vision Sensor (DVS) for traffic
scenes data collection, in which the data has low latency and
high dynamic range. Due to the characteristics of DVS, images
exclude the effects of illumination changing and redundant
background (sky, road surface, etc.). However, the applica-
tion scope of this dataset is limited since most vehicles are
equipped with color cameras instead of DVS.

C. Dataset summary

To facilitate the reader to select appropriate datasets accord-
ing to different task requirements, we summarize the charac-
teristics of the above-mentioned datasets and their citation in
Table II, with more technical details in Table III.

Most of the existing traffic scene datasets are collected in ac-
tual driving scenes and contain a variety of complex situations,
such as complex lane marking distribution, incomplete lane
marking information, road texture interference and shadow
occlusion. However, the lane marking detection datasets under
extreme weather conditions are very scarce. Although there are
rainy traffic scenes in VPGNet, and CULane contains a large
number of dark driving scenes, more challenging datasets,
which integrate multiple complex traffic scenarios including
extreme weather conditions and various visibility scenes, such
as different levels of rain, snow and fog and more moments
in a day (dusk, night, etc.), are expected.

III. REPRESENTATIVE OBJECTIVE FUNCTIONS

The design of the optimization objectives is critical to the
success of deep learning methods. Well-behaved objective
functions serve as the basis for many algorithmic improve-
ments. In this section, we discuss the objective functions used
for lane marking detection in different learning scenarios.
Generally, learning algorithms are divided into two main cat-
egories: supervised learning and unsupervised learning. Clas-
sification and regression are two main themes of supervised
learning. Therefore, we will discuss the involved objective
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functions from three aspects: for classification, for regression
and for effective unsupervised learning (via deep generative
models). Illustrative summaries is shown in Fig. 2.

A. Objective functions for deep supervised learning models

1) Softmax based cross entropy and variants for classi-
fication: Many existing deep learning-based lane marking
detection algorithms model the whole procedure of learning
a pixel-wise classifier with well-annotated data, which indi-
cates whether the present pixel can be categorized into lane
marking given the local/global semantic information. Such a
formulation is well studied in the deep learning community
and softmax-based cross entropy and its variants are widely
adopted as objective functions for optimizing these models.
Given two C'-dimensional discrete probability distributions
y(c) and y(c), ¢ = 1,...,C, the cross entropy H(y||y) of
the distribution ¢ relative to p is defined as

H(ylly) = Zy )log7i(c )

When Eq.(1) is applied to class1ﬁcat10n, the support distri-
bution y is often taken as C'-dimension one-hot label vector
Yon» the output distribution ¥ of the neural network is obtained
by the mentioned softmax layer as ¥s f¢mz, and Eq.(1) becomes

o efi()

logy(j) = —log SETCK 2)
where f; is the feature mapping of the ith class and j denotes
the ground truth class of input z.

Although the softmax based cross entropy has demonstrated
remarkable performance in various classification tasks, many
studies still focus on improving its performance to tackle
some long-existing problems such as hard sample mining and
class imbalance, and these variants can also be found in lane
marking detection. For example, [44] further regularizes the
intra-class distance of the samples in the same class; [58], [75],
[76] allocate different weights to different classes to alleviate
training problems brought by unbalanced classes.

2) Regression losses: When the output of a deep learner
is expected to be continuous, regression losses are more
suitable compared with those classification ones mentioned in
section III-A1. In lane marking detection, the most commonly
used regression losses are the mean squared error (MSE) [53],
[59], [64], [75], [77]-[79], mean absolute error (MAE) [54],
[79], [80], and Huber loss defined as

H(yon| |378ftmw) =

S sW—0)7 ly—yl <o
Ls(y.y) = { 0-(ly—1yl - %6), otherwise 3)
where y is the ground truth, ¥ is the predicted value and § is

a parameter.

It is well known that MSE and MAE have their own charac-
ters. Generally speaking, MSE focuses more on larger errors,
while MAE focuses on smaller ones. In this sense, MAE tends
to be more robust to outliers than MSE. Combining the merits
of MSE and MAE, the Huber loss is often used in various deep
learning-based regression problems. For more introductions on
various robust regression losses and extensions in the deep
learning area, readers can refer to [81].
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Widely-used losses for lane marking detection

Losses for supervised learning
Classification loss

Regression loss

Softmax based cross entropy loss MSE Smooth L1 loss

Losses for unsupervised or semi-supervised learning

Generative adversarial loss Auto-regressive loss

MAE f-GAN W-GAN

Fig. 2. Summary of widely-used objective functions for lane marking detection.

TABLE IV
COMPARISON WITH OTHER APPROACHES. & DENOTES INPUT IMAGE, ¥ IS THE CORRESPONDING LABEL, ¥ IS THE PREDICTION RESULTS. THE REMAINING
VARIABLES ARE INTRODUCED IN THE RELEVANT PART OF SECTION IV.

MSE L= [Hig(x) = ly(2))%dz [59] (1
MAE Loss = 32,2 |zpi — zgil +>;2 lypi — ygil [54] @)
T =7 =
o . ~ sW—9% -yl <o
Q. P QQ J = 2
Discriminative Loss Regression Loss Huber Ls(y,9) 5 (ly—7— %5)7 otherwise 3)
. . T~~C 1 N
(Loss for supervised learning) Hinge Loss Lfar = %Zczl cm it e — il = 51;]1 ,
Laist :Nic(c—l) ZCA:% ZCB:LCA.;&CB [6q — HHL‘A — prep |13 144] “)
Cross Entropy Les=30;" 2’ Yn log ¥y, + o(1 —y;,) log(1 — ¥p) _ 51} &)
Generative LOS? GAN L!lfi"(mv Y5 096’"7 adisc) = Lcel(G(x; egen? z, edisc)) + Ak Lemp (y7 Y5z, edisc)
(Loss for unsupervised/ Lgisc(2,Y; 0gen, 0disc) = Lyce(D(G (%5 0gen); Odises 1)) + Lice (D(y; 0dise;0))  [531] (6)
semi-supervised learning) Auto Regressive Loss p(]x) ~ p(1[x) TT5—; i1l %) = p(i]x) [T, p(Awi]li, X) (611 (D

B. Objective functions for deep unsupervised / semi-
supervised learning models

In recent years, deep unsupervised / semi-supervised learn-
ing algorithms have demonstrated great capability in many
challenging learning cases, such as the absence of enough
well-annotated training data and the pursuit of interpretable
deep learning. Among the existing methods, autoregressive
models [82], normalized flow models [83], variational autoen-
coder [84] and GAN may be the most widely-used ones for
various computer vision tasks, and lane marking detection is
not an exception. Compared with the objective functions of
fully supervised manners, such as classification losses and
regression losses, objective functions for deep unsupervised
/ semi-supervised models aim to acquire the intrinsic prop-
erties of the high-dimension data. For example, [61] share
a similar methodology with the autoregressive models which
model the potential data distribution sequentially, [53] uses the
conditional generative adversarial network as regularization to
generate realistic semantic segmentation. Among various deep
generative models, GAN may be the most representative and
its objective functions can be defined under the framework of
integral probability metrics [85] as follows:

it sup Eo-r, [f(@)] = Eone, [f ()], )

where P, is the probability of the real data, Py is the
probability of the output of the generator networks, and f
is the discriminator network within the function class F. The
different choices of F may lead to different variants of GAN,
such as f~-GAN [86] and W-GAN [87]. Here we would like to

point out that the current use of conditional deep generative
models may be insufficient for fully exploiting the fruit of
powerful deep generative models, and one potential research
direction of deep generative models to lane marking detection
is to synthesize high-quality training samples. More works on
this emerging area are expected.

Examples of the above-mentioned objective functions ap-
plied in lane marking detection are shown in Table IV. To
the best of our knowledge, there is no one-fits-all objective
function to train neural networks for different purposes, and
the context of application is of the key consideration on which
a suitable choice is made. In this case, for different steps or
constraints imposed for the same aim, it is very common to
find in recent literature [47], [65]-[67] that more than one
kind of objective function is adopted throughout the whole
procedure. Because objective functions are among the most
important factors affecting the performance of deep learning
algorithms, more comprehensive reasons for the choice and
more detailed experimental validity are expected for future
research in the lane marking detection community.

IV. ADVANCES OF LANE MARKING DETECTION NETWORKS

Lane marking detection algorithms based on handcrafted
features are feature-specific and often perform poorly on
complex traffic scenes. In contrast, deep learning allows an
algorithm to automatically learn feature representation at vari-
ous levels, avoiding the limitation of manual feature extraction.

CNN is a neural network designed to process data (such
as images) with a similar network structure and has excellent
feature extraction capabilities and classification performance.
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Vision-based intelligent driving tasks, including lane marking
detection, usually use the traffic scene images (frames in the
video) collected by the vehicle-mounted camera as the data
source [29]. This is the reason why almost all lane marking
detection algorithms are inseparable from CNN. Despite the
success of basic CNN, the following problems and questions
have inspired recent and more effective deep architectures for
lane marking detection:

1) Different from ordinary semantic segmentation targets,
lane marking has unique color (white, yellow) and shape
(slender line). How to integrate these unique properties into
the design of a neural network and improve its performance?

2) There are many types of lane markings, such as single
solid lines and double yellow lines. Sometimes simply detect-
ing the position of lane marking is not enough to meet the
needs of traffic scene understanding. To better complete the
assisted driving task according to the traffic regulations, how
can a proposed algorithm be able to further determine the type
of lane markings?

3) For assisted driving, real-time performance is an impor-
tant consideration, as lane marking detection needs to be car-
ried out while the vehicle is traveling. How can the efficiency
of an algorithm be improved while maintaining detection
accuracy? To make the algorithm suitable for vehicle-mounted
scenarios, how to reduce the network magnitude?

According to the solutions to the above three questions,
deep architectures in lane marking detection methods will be
discussed in Sections IV-A, IV-B and IV-C, respectively.

A. Deep architecture focusing on lane marking structure

The advances of deep architectures for lane marking de-
tection are inseparable from that of semantic segmentation
network structures. Therefore, in this section, we will use the
advances of semantic segmentation networks in recent years as
a clue to start a discussion of lane marking detection networks.

[88] combines CNN and the random sample consensus
(RANSAC) algorithm to refine lane marking detection results
under relatively complex road conditions. Different from [89],
which extracts a small image patch centered on each pixel as
the input of CNN to predict the semantic label of the pixel,
[88] manually extracts the Region of Interest (ROI) as the input
of CNN, and directly outputs the lane marking candidates
by using multilayer perceptron in the fully connected layer.
To add more auxiliary information about lane markings, [90]
inputs the left, center and right three-angle images obtained by
the car camera into CNN. However, the shortcomings of these
traditional CNN-based methods are obvious. First, it needs
to traverse each pixel (in the image or ROI) to extract the
patch for training and prediction, which is space-consuming,
and there is a lot of redundant calculation between overlapped
patches; Secondly, it is difficult to decide the appropriate
size of a patch. Too small patches would lack the context
information, while too large patches will increase calculation.
Finally, the position information, though important for lane
marking segmentation, would be discarded by the pooling
layer in CNN.

To improve the computational efficiency in CNN and to
maintain position information, [91] proposes Fully Convo-
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Iutional Networks (FCN). FCN replaces the fully connected
layer of traditional CNN with a convolutional layer. After
the replacement, the output feature map is upsampled by
deconvolution, so that the output prediction map and the input
map have the same size and the position information can
be retained. In this way, it is sufficient to directly calculate
the classification loss between corresponding pixels during
backpropagation, thereby achieving the pixel-level end-to-
end semantic segmentation. Furthermore, the FCN avoids the
disadvantage that the input image size in the fully connected
layer must be fixed, that is, it can handle any size of input.

[92] applies FCN in lane marking detection, which allows
the network model to obtain multiple input area scores in a
single forward calculation and improves the efficiency. Given
the linear characteristics of the lane marking, they added
regression loss to the pixel-level loss function. However, the
results obtained are relatively fuzzy and smooth due to decon-
volution. Also, this algorithm classifies each pixel separately
and does not fully consider the spatial consistency between
pixels. To solve the loss of useful information during FCN
upsampling (deconvolution) and to increase contextual contact,
[93] proposes the U-Net for medical image segmentation,
which achieves the best results on an ISBI challenge.

Compared with FCN, U-Net has three improvements: firstly,
it is a symmetrical model. U-Net gradually reduces the spatial
dimension of the input data by using the pooling layer of the
encoder, while the decoder gradually recovers the details of
the target and the corresponding spatial dimension through
the network layer such as the deconvolution. The feature map
between the symmetric paths is fused, allowing the network
to propagate context information to higher resolution layers.
Secondly, unlike the feature fusion method in FCN which
adds points point by point, U-Net uses features that are
stitched together in the channel dimension to form more thick
features, which can better preserve the correlation between
features. Thirdly, U-Net completely cancels the operation of
full connection in FCN, which not only saves the number
of parameters but also facilitates the fusion of high and low
layer features. In this way, U-Net can train the model with a
small amount of data to efficiently obtain higher segmentation
accuracy. Many of the deep structures borrow the ideas of
symmetric structure and long skip connection from U-Net for
lane marking detection, such as [48], [53], [75].

However, the simple U-Net-based segmentation network
does not take into account three unique properties of lane
markings:

1) Lane markings have the spatial structure of slender linear.
The convolution operation makes this structure destroyed,
which reduces the detection efficiency.

2) Objects in the same scene have certain correlations.
Therefore, networks should use the scene information a priori
when segmenting lane markings.

3) There is a certain regularity between the positions of lane
markings in the same scene. The network should make full use
of this inherent constraint.

Inspired by the above three aspects, many researchers have
combined the inherent characteristics of lane markings to
improve the codec structure of U-net, which are discussed
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in the following three parts: leverage spatial structure, scene
prior and position regularity, respectively.

1) Leverage spatial structure: Leveraging the spatial struc-
ture of lane markings during network learning can greatly
improve detection performance. The convolution mode and the
objective distribution are two important components of neural
networks and two starting points for modification.

Improvements in Convolution Mode.

To preserve the internal data structure and avoid down-
sampling which loses useful information, dilated convolution
[94] was proposed. It injects holes into the standard convolu-
tion map, and thus increases the receptive field without losing
information by pooling.

Many segmentation network structures, for example, E-Net
[95] and EDANet [96], make use of dilated convolution, and
some for lane marking detection, such as [43], [48], [49],
[97]. As the lane marking pixel is of small size, narrow, and
easily lost during downsampling, [97] proposes two techniques
based on EDANet, which are Feature Size Selection (FSS) and
Degressive Dilation Block (DD Block) to improve the lane
marking segmentation accuracy. FSS is designed to extract
fine features. In EDA-FSS, the EDA block is arranged after
each downsampling block to extract multi-size features before
the vanishing of thin lane features. As incremental dilation
rates will lead to inconsistent spatial information in local
features of deep layers, the DD Block of convolution layers
with degressive dilation rates is designed and inserted into
EDANet to keep spatial information consistent in layers of
different depths.

However, there are some problems with dilated convolution:
first, not all pixels are used for calculation when dilation rate is
not continuous, so the continuity of object information would
be lost; second, the design of dilated convolution is to obtain
long-ranged information, but the large dilation rate may only
be effective for some large objects, harmful for small objects.
Hence, how to handle objects of different sizes is the key to
designing a dilated convolution network.

For linear targets such as lane lines, [38] proposes SCNN
focusing on making the internal connection of feature maps
stronger. A new convolution method was designed to change
the direction of the information flow, as shown in Fig. 3.
Suppose the output of a convolutional layer is a feature map of
size C'x W x H. The feature map can be divided into H slices
of size C'x W . A convolution kernel of the same size is applied
to each slice in turn, with the middle slice convolved after the
previous layer’s convolution results are superimposed on it.
The spatial convolution can be operated in four directions:
up, down, left and right. Spatial convolution changes the
direction of the information flow in the convolution, making
the internal connection of the feature map stronger. Therefore,
it is advantageous for target detection like lane lines and walls,
which have long continuous shape structure.

To make the network more suitable for detecting long and
narrow targets, SpinNet [68] designs a spinning convolution
layer, in which 1D convolution is used instead of square
convolution to obtain a narrow receptive field. Besides, feature
maps will rotate by different angles in this convolution module
to extract and fuse features in multiple directions.

IEEE Intelligent Transportation Systems Transactions

Graph Convolutional Network (GCN) is another convolution
design to strengthen target structure. It can use the adjacency
matrix to define the connection relationship of each node,
thereby highlighting the structure between the nodes. In the
color-based segmentation network of [77], it uses the connec-
tivity structure of the graph to keep the relationship between
adjacent pixels and thus stress the lane marking structure.

Among the new convolution methods mentioned above,
SCNN and SpinNet are specifically proposed for slender
targets. However, it still needs to be improved in terms of
calculation speed. Here we would like to point out that the cur-
rent lane marking detection networks are mostly committed to
improving the segmentation performance of the network. How
to develop new convolution methods with fast segmentation of
linear targets remains an open question for the future.

Improvements in Objective Distribution Learning.

Instead of learning pixel-level features as do traditional
CNNs, GAN focuses on the learning at distributional level,
consisting of two CNNs: one is called generator for producing
results that approximate real data and the other is called
discriminator for judging whether the generated data is true.

EL-GAN [53] leverages GAN in lane marking detection
for more realistic and rich-structured semantic segmentation
results, as shown in Fig. 4(a). The generator of EL-GAN
uses a fully convolved U-Net structure with skip connections,
while a DenseNet structure is applied in the discriminator. In
order to highlight the pairing differences between the original
image and different tags, EL-GAN adds another discriminator
with shared parameters. The optimization objectives of EL-
GAN thus contain that of the original GAN and an item that
measures the pairing difference, as shown in Table IV (6). In
order to handle complex traffic scenes, such as lane markings
are obscured or defective, [98] designs Ripple-GAN blending
the ideas of feature fusion, Wasserstein generative adversarial
training and multi-target segmentation. Experiments showed
that Ripple-GAN achieves excellent performance, especially
when lane marking information is incomplete.

The attention mechanism weights different features differ-
ently in the feature maps to highlight the factors that are
crucial to the objective distribution. [52] designs semantic-
guided channel attention and a pyramid deformable con-
volution module to enhance the structural features of lane
markings during the network training. [62] combines self-
attention with channel attention to capture the global context
and strengthen important features of lane marking. [43]
uses self-attention with knowledge distillation to enhance
the continuity of contextual information. This Self Attention
Distillation (SAD) is trained without a teacher network, and
the distillation is guided by the layer-wise attention knowledge
extracted from the network itself, as shown in Fig. 4(b). In this
way, lane marking detection would be substantially improved
in challenging scenes without the extra complexity of the
algorithm.

No matter the reform of the convolution mode or the
emphasis of the objective distribution on the feature map, these
researches successfully drive the semantic information of the
target (lane marking) to be learned in the process of deep
learning. In future research, it merits further investigation to
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Fig. 4. Objective Distribution Constraint. (a) The overview of EL-GAN [53]. Adding the embedding loss to GAN to enhance the connection between the
lane marking prediction results and the original scene. (b) Lane marking detection with SAD [43]. The SAD is used to extract the attention map to enrich

the context information.

make such learning more interpretable, so as to provide more
ideas for improving lane marking detection.

2) Leverage scene prior.: The information in the scene
can supplement auxiliary to the segmentation of objectives.
VGPNet [55] uses lane vanishing points to guide lane marking
detection. In order to improve the algorithm versatility and
reduce the difficulty of labeling, [99] proposes a new method
of vanishing points-assisted lane detection based on heatmap
regression. [100] first detects lane region mask and then
calculates the convex hull surrounding the mask to attain the
lane marking. A idea similar to [100] is used in [58].

In order to introduce the global scene information prior to
segmentation, PSPNet [101] proposes a pyramid pooling mod-
ule to fuse features at different scales. Inspired by this, [49]
proposes ZoomModule, which inputs the panoramic image and
multiple patches from the original image into two CNNs to
extract features and merges the obtained features of different
scales. In this way, [49] can flexibly change the field of view
to improve the detection of details.

Since the lane markings have a slender structure, [61] make
use of the distribution of pixels around the lane markings
in pixel-level prediction. It designs a FastDraw module to
maximize the likelihood of polylines and assumes that the
current lane marking point coordinates depend only on the
previous ¢ decoded coordinates, as shown in Table IV (7).

The feature pyramid simply fuses features of various sizes,
which inevitably has redundant information. How to fuse these
features more efficiently and effectively for lane markings
requires further thinking.

3) Leverage position regularity.: The lane markings are
different from other segmentation targets, and their distribution
in the scene has a certain regularity. For example, the lane
markings are all distributed on the road surface; the lane
markings are parallel in the Bird’s Eye View (BEV), and the
lane markings in the continuous scenes have continuity. These
regularities can help to infer the lane marking location based
on the known lane markings, and thus the problem of the
incomplete lane markings.

To predict the invisible lane markings, [102] manual rea-
sons the unseen lane markings with the assumption that the
distances between lanes are even and the lane marking shape
of one lane is similar. Moreover, Yolo [103] and convolutional
patch network with spatial prior [104] are employed to remove
cars and non-road surface, respectively. In this way, lane
marking features can be accurately extracted on the obstacles
removed images.

In addition to manually determined assumptions for infer-
ring lane markings, different network structures are proposed
to use lane marking information in different view fields. [50]
achieves more efficient vanishing lane marking prediction by
deep learning with the assistance of an adaptive dark-light-dark
method. [65] designs horizontal reduction modules to treat
lane marking detection as a line-by-line classification problem,
making use of the inherent shape of lane markings. Neural
Architecture Search (NAS) is a technology for automatically
designing high-performance network structures based on sam-
pled data through algorithms. [51] uses NAS to capture lane
marking’s long-ranged consistency and short-ranged curve
information, achieving a better detection performance of curve
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Fig. 5. The overview of LaneNet in [75], where LSTM is used for mutual
reasoning of different lane markings in the same scene.

lanes. Such a method, however, is computationally expensive.

Long Short-Term Memory (LSTM) has been introduced
to the lane marking detection to strengthen the reasoning of
association. LSTM, a special type of RNN, can learn long-term
dependency information in a sequence. For this reason, some
researches combine it with the CNN-based network to exploit
the correlation of lane markings within or between frames.

Lane edge proposal and location are respectively imple-
mented by two networks in LaneNet [75]. LSTM is used
at the end of lane marking location network to sequentially
predict different lanes, as shown in Fig. 5. Lane edge proposal
network based on encoder-decoder aims to produce binary lane
line map. In the encoder, the combination of depthwise sep-
arable convolutions and 1x1 convolutions are used to reduce
computation cost. Dilated convolution is used to enlarge the
receptive field. In order to reduce the training complexity, sub-
pixel convolution layers (used in [105]) and skip connections
are employed to restore feature resolution in the decoder. The
loss function of this network is weighted binary cross entropy,
as shown in Table IV (5).

A lane line location network is proposed to detect lane
markings in multiple patterns more accurately. Lane marking
coordinates extracted from the binary lane marking map is
entered in this network, so the size of the input is reduced
and the prediction can be accelerated. In order to encode
the coordinates into a low-dimensional overall representation,
the location network applies a series of 1D convolution and
pooling layers in the encoder. To solve the problem of an
unknown number of lane markings, LSTM is applied in the
decoder to sequentially infer lane markings. Each lane marking
is fitted with a quadratic curve. To avoid manually labeling
the ground truth of each curve, the distance between the
input coordinates and the predicted curves is calculated in
loss functions, which leads to weakly supervised training.
However, the detection results can be unsatisfying when weak
supervision is used as it depends too much on the results of
the lane edge proposal network.

In order to obtain satisfying performance in challenging
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situations such as heavy shadow, lane mark degradation and
occlusion, [76] incorporates the information from continuous
frames to infer lane markings. Different from [75], a ConvL-
STM block is inserted in the middle of the codec to fuse the
features extracted from frames at different moments and retain
essential information to predict lane markings. [560] uses a
similar framework to [76] and inserts two convolutional gated
recurrent units to speed up LSTM.

To deal with the situation of scene changes, mutual infer-
ence within frames is more effective than inter-frame infer-
ence; however, LSTM-based reasoning needs one frame to be
repeatedly calculated so that all lane markings are detected.
In addition to using LSTM to explore the position regularity
of lane markings, [63] uses optical flow estimation between
frames to obtain the spatio-temporal features of the image and
assist lane marking detection. Some information that is more
stable and helpful to efficiently infer lane markings needs to
be mined.

B. Deep architecture focusing on lane marking classification

To better understand the traffic scene, the lane marking
detection algorithm is expected to determine the type of lane
marking while accurately detecting its position, which can
provide more useful information for assisted driving. [45]
inputs the lane markings detected by handcrafted feature-based
method into a CNN to distinguish different types. However,
more and more researches pursue an efficient end-to-end lane
marking discrimination model.

[106] attempts to apply the region CNN in target detection
to detect lane markings and modified the framework of the
anchor generator according to the slender characteristics of
the lane markings. Thereby, this method realizes the anchor-
based lane marking detection. However, the lane markings are
detected in bounding boxes, which lacks structural continuity.
To solve this problem, [66] proposes a novel anchor-based
attention mechanism using global information to infer the
location of lane markings. Compared to the bounding box of
target detection, instance segmentation can be more accurate to
the edge of the object, and differently from ordinary semantic
segmentation, it can label different individuals of the same
object in the images. [77] directly uses instance segmentation
to recognize the type of lane marking. However, this direct
segmentation of different types of lane markings is easily
affected by factors such as occlusion and incomplete.

To solve this problem, [49] proposes the line prediction (LP)
layer to effectively distinguish lane markings. In LineNet’s LP
layer (Fig. 6(a)), six detection tasks, mask, position, direction,
confidence, distance and type, are separated into six branches
at the end of CNN. The LP layer can also comprehensively
analyze the structure information of lane markings. It is
expected that each task can promote the other. However, due
to the high degree of network overlap between different tasks,
the different tasks will also inevitably restrict each other.

Unlike [49], multiple tasks in [44] are set in different
branches belonging to different decoders to learn the struc-
ture of lane markings from many perspectives, as shown in
Fig. 6(b). Except for the ordinary segmentation task used
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Fig. 7. The overview of PointLaneNet [64]. Two cascaded CNN networks are used for lane marking detection and classification, respectively.

to generate a binary map of lane markings, the embedding
task maps the pixels of the same lane markings close and
those of different lane markings far away. Benefited from the
combination of those two tasks in the decoder, the problems of
lane marking changes can be solved. The loss function of the
segmentation branch is a standard cross-entropy loss function;
the embedding branch loss function consists of two parts, as
shown in Table IV (4).

Similar to [44], [59] also adopts the idea of branched multi-
tasks for lane marking detection. A horizon estimation branch
and a line classification branch are added after the encoder to
detect the range and presence confidence of lane markings.
In this way, it can also solve the problem of the change
in the number of lane markings. [59] also proposes a new
lane marking fitting scheme. Previous lane marking detection
methods usually fit the line based on the segmentation results.
Nevertheless, the lane marking segmentation could lead to
unreliable detection as it is a prediction. Therefore, a differ-
entiable least-squares fitting module is designed to directly
regress lane marking parameters. A geometric loss function is
proposed to achieve the end-to-end training of the network:
instead of measuring the squared distance between predicted
parameters and real parameters, it minimizes the distance
between the predicted lane (I3(x)) and real curve (I,(z)) to
make the fitting result more realistic, as shown in Table IV (1).
Experiments in [107] show that weighted least-squares linear
regression on network segmentation results can fix broken lane
marking edges and improve detection performance.

As multi-task learning requires post-processing to deal with
different prediction results from different branches, [60] re-
places multi-task branches with two cascaded CNNss to achieve
instance segmentation and lane marking classification.

The methods based on pixel-by-pixel semantic segmenta-
tion have a common flaw: lane markings are only a small
proportion of the whole image and a slight loss in segmenta-
tion can significantly degrade the detection performance. The
regression network can avoid this flaw by directly predicting
the lane marking coordinates and separating different classes
of lane markings.

The coordinate network proposed by [54] can directly
produce classified lane marking points. The MAE loss function
is implemented to characterize the distance between predicted
coordinates (zp, yp) and ground truth (zg,yg) (Table IV (2)).
PointLaneNet [64] also treats lane marking detection as a
regression task. Compared with [54], PointLaneNet considers
more dense points including starting point, ending point (the
bottom of images by default), lane marking center point and
lane width (a known value according to laws and regulations)
to infer disappeared lane marking features during multiple
downsampling. The structure of PointLaneNet is shown in
Fig. 7. PointLaneNet consists of a feature extraction network
and a ConvLaneNet to conduct lane marking representation. To
get more detailed detection results, the low-resolution image
is divided into WxH grids to make each grid passed by one
lane marking at most. Then feature maps of those girds are
entered into the ConvLaneNet. The offset of lane marking
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points from center points of grids are predicted together
with the starting position (in the vertical direction) and lane
marking presence confidence. Non-maximum suppression is
finally used to suppress redundant multiple predictions for
each lane marking.

It can be seen from the above discussion that the regression-
based lane marking detection is easy to classify and the
network is easy to converge, while the segmentation-based
methods can respond flexibly to the lane marking changes.
[42] combines these two methods by using the multi-task
network structure. There are four tasks to exploit the structural
information of lane markings in which the binary segmentation
task and lane pixel embedding task are similar to those of [44].
The drivable area detection task predicts the segmentation of
lanes to further constrain lane markings. Finally, there is a
lane point regression task to further explore the structural and
contextual information cooperating with binary segmentation
results.

C. Deep architecture focusing on efficient calculation

As a task that requires real-time performance, lane marking
detection also needs efficient detection speed while pursu-
ing accuracy. In this section, we summarize some novel
frameworks used in lane marking detection to improve the
detection speed and finally make a comparative analysis of
the previously mentioned algorithm in speed performance.

Deep networks for semantic segmentation mostly require
a lot of floating-point operations. Long-running time hinders
their real-time applicability. VGG tries to improve the accuracy
by deepening the network. However, excessively deepening
the network will make the convergence slow, and there will
be over-fitting problems on small datasets. Residual network
(ResNet) [108] applies residual representation to the construc-
tion of CNN models. It learns the residual representation
between input and output by using short skip connections,
which is much more efficient than direct learning the input-
output mapping. [67] implements a small-sized anchor-based
lane marking detection algorithm on ResNet, and its real-time
performance can reach 175 fps. Based on ResNet, Efficient
Neural Network (E-Net) [95] is designed for short processing
times and has a good balance between accuracy and speed. It
consists of an initial block and different bottleneck blocks.

To reduce the amount of computation, E-Net tries to use
pooling and convolution parallel. Each n X n convolution
is decomposed into a convolutional cascade of n x 1 and
1 x n. This operation is called factorized convolution which
can save a lot of parameters. PReLLU, dilated convolutions
and regularization are also applied to improve computational
efficiency. E-Net is thus often used as a backbone in lane mark-
ing detection networks focusing on computational efficiency,
such as [42]-[44]. Inspired by E-Net, [77] proposes Global
Convolution Network which divides normal convolution into
two one-dimensional convolution kernels to maximize the size
of the convolution kernel without increasing the computational
burden.

Unlike E-Net, which puts the downsampling on the front
of the network to compress the image into a highly efficient
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representation, Efficient Dense modules with Asymmetric
convolution (EDANet) [96] set a 1x1 convolution in front
of each EDA module to reduce the number of channels in
the input map, and combine dense connectivity to increase
the feature map connection between different modules. In
this way, EDANet achieves a balance between accuracy and
speed, which is used in [97] to achieve efficient lane marking
detection. Efficient residual factorized ConvNet (ERFNet)
[109] is also a network dedicated to real-time segmentation
tasks. Compared with E-Net, the ERFNet further accelerates
the computational efficiency. It is also based on an encoder-
decoder architecture consisting of a downsampling module, a
non-bottleneck-1D module and a deconvolution module.

The biggest contribution of ERFNet is the combination
of accurate non-bottleneck residual connection and computa-
tionally efficient factorized convolution. In the downsampling
block, the strategy of parallel pooling and convolution is also
adopted. [58]-[60] use ERFNet as a backbone to improve the
efficiency of lane marking detection.

The deep networks are evolving toward high efficiency and
high accuracy. In addition to those mentioned in this section,
there are other well-developed network structures, such as
PSPNet [101] and RefineNet [110], which can also be applied
to lane marking detection to balance detection accuracy and
efficiency. For more comparison of real-time segmentation
network performance, readers can refer to [111].

The time to test the lane markings by various methods with
their experimental settings is ordered in Table V.

TABLE V
COMPARISON OF ALGORITHM COMPLEXITY. ORDERED BY FRAME PER
SECOND (FPS): THE NUMBER OF IMAGES THAT CAN BE PROCESSED IN
ONE SECOND.

01 [ 167 [ 1001 [ BT [ o [ 2T ] I [ B8]

1 [
Parameter(M) 249 - 2213 - 255 085 | 249 [ 533 267 | 15.98 926 | 2072 | 53.70
S 1724.1 | 1754 171 98.0 | 90.31 746 | 715 71 | 58.93 526 47 | 27.58 | 23.81 2
Processor GPU | GPU | GPU | GPU - - | GPU | GPU | GPU | GPU | GPU | GPU | GPU | GPU
#GPUs 1 1 1 1 - 1 - 1 1 1

Due to the combination of LSTM, [76] achieves a strong
network inference ability by employing a simple codec, and
it is the fastest when the feature from previous frames are
saved and reused (although with two GPUs, its processing
speed is still very competitive if converted to a single GPU).
Anchor-based methods greatly improve the speed of lane
marking detection since they avoid pixel-by-pixel classification
in segmentation. [67] achieves faster detection than [60] by
reducing the anchor size. [66] trains an efficient detection
network using knowledge distillation. Both [61] and [38]
are lane marking detection algorithms focusing on contexture
information, however, [38] spends apparently more runtime on
the proposed convolution method. [42] and [44] are similar
methods that finally obtain the classified detection results
through multitasking and use the E-Net as structure backbones.
Since [42] performs the regression task and the segmentation
task at the same time, it achieved a faster test speed eliminating
the lane marking fitting step. Both [59] and [60] use ERFNet
as skeleton network, but [60] has lower FPS as two cascaded
CNNs are included. [98] has excellent detection performance
but its network consists of basic convolution layers without
paying attention to improving network computing efficiency.
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Generally, lightweight networks with a small number of
parameters, such as [42], [59], [76], have much less difficult
to deploy.

In Section IV, we analyzed the advanced methods of
lane marking detection based on the development of deep
architectures. The end-to-end networks based solely on visual
images are the current mainstream algorithm of lane marking
detection. Also, some researches use neural networks as an aid
for manual lane marking feature extraction, such as [57] and
[78]. All algorithms mentioned above conduct 2D lane mark-
ing detection. We note that some algorithms have carried out
related research with the aim of 3D lane marking positioning,
for instance, [79] and 3D-LaneNet [80].

V. DATA PROCESSING AND PERFORMANCE EVALUATION

In this section, we summarize data pre-processing and
post-processing techniques (Section V-A) and performance
evaluation metrics (Section V-B) used by many lane marking
detection methods, as well as the performance comparison
(Section V-C) of these methods.

A. Effective data processing

To improve the detection results of lane markings, many
researches have applied some extra but effective data pre-
processing and post-processing.

Common pre-processing methods are color space change
[46] [102], filter [57], data augmentation [64], [67], etc. Due
to the perspective principle, the parallel lane markings intersect
at a point in the distance. Inverse perspective mapping (IPM)
is the inverse process of perspective mapping. It can use the
positional information, such as the angle and height of the
camera, to establish a 3D coordinate system, eliminate the
perspective effect, and obtain the BEV of the scene. After
IPM, lane markings are converted into parallel lines in BEV,
which is more convenient for detection and curve fitting. IPM
is used in [44], [45], [75], [79], [80], [102].

Elimination of redundant points and fitting into lines are
often required as post-processing in lane marking detection.
[45] and [75] employ non-maximum suppression to reduce
redundancy and make the prediction more accurate. There are
many ways to fit the lane markings. Second-order or third-
order polynomials are often used as models for lane line fitting
[48], [75], [102]; RANSAC is widely used for straight line
fitting and plane fitting [78]; the least squares fit is applied in
[44] and [59].

B. Evaluation metrics

From the network prediction, each entry of the confusion
matrix can be obtained, including true positive (TP), true
negative (TN), false positive (FP) and false negative (FN),
which are the basis for common evaluation metrics.

Accuracy (%), Recall (%) and Preci-
sion (%) are simple and intuitive statistics which are
often used to evaluate the detection performance. Recall and
Precision are interdependent. When all objects are judged as
positive samples, FN is 0, and the Recall reaches its maximum
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of 1. However, the FP value is large at the same time, which
will cause the Precision value to be very low. So it is not
accurate to measure lane marking detection with Recall or
Precision alone. The F1 score takes into account both Precision
and Recall and is an indicator used to measure the accuracy
of the two-category model in statistics:

Precision x Recall
F1=2 . 5
% Precision + Recall )

To solve the single value limitation of Precision, Recall and
F1 score, the mean average precision (mAP) was proposed.
With different number of samples are selected from the entire
sample range, different values of Recall and Precision can be
obtained to draw the Precision-Recall curve. AP is the area
between the precision-recall curve and the coordinate axis;
mAP is the average of APs in different categories.

The confidence of each prediction target should be consid-
ered when calculating the mAP. To decide prediction confi-
dence, the intersection over union (IoU), which calculates the
overlap between detection results and ground truth, is usually
employed: TP
 TP+FN+FP’

For multi-category lane marking segmentation, mloU is
used instead of IoU as a metric:

ToU (©6)

s TP(t)
mlol =7 ; TP() + FN(t) + FP(t)’

)

where C' is the number of classes.

In regression lane marking detection algorithms, the perfor-
mance of detection is evaluated by the distance between the
predicted value and the true value, including MSE (used in
[77]1), MAE (used in [77]), and mean prediction error (MPE,
used in [54]),

N
1 - -
MPE = ?:1 V(@ — 202+ 0 — ve)2, ®)

where (7, y;) are predicted coordinate of the ground truth
coordinate (x4, y¢) for N sampled points on the lane markings.

TABLE VI
REPORTED USE OF EVALUATION METRICS. only Acc: ONLY ACCURACY
USED; -Acc: ONLY FN AND FP USED; +Precision: PRECISION ALSO USED.

Page 12 of 22

Metrics Lane marking detection methods

[531; [421 14315 (6115 [601; [64]; [76]; [66] [65]; [
(only Acc): [45]; [46]; [48]; [59]; [67]
(-Acc): [

Accuracy, FP, FN ]
(+Precision):

I [

1

ToU, mIoU 81 1

F1 score

MSE, MAE

MPE

— == =

mAP

The reported use of the evaluation metrics is summarized
in Table VI. Algorithms using the Tusimple dataset would
use accuracy, FP and FN, as they are the metrics used in the
Tusimple lane marking detection competition.
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C. Performance comparison

Tusimple and CULane are two datasets most commonly
used to evaluate the algorithms mentioned in Section IV.

TABLE VII
RESULTS ON THE TUSIMPLE DATASET. DA: DATA
AUGMENTATION.RES34: FRAMEWORK BASED OM RESNET-34

F1 score | Accuracy FP FN Extra training data Supervision

[9%] 97.67 97.82 0.0048 | 0.0289 No semi-supervision
[66](Res34) 96.77 95.63 0.0353 | 0.0292 No supervision
[52] 93.44 96.91 0.0263 | 0.0252 Yes(DA) supervision
[65](Res34) 92.28 96.22 0.0308 | 0.0376 No supervision
[56] 91.13 95.25 - - No supervision

[53] 90.56 96.39 0.0412 | 0.0336 No semi-supervision
[64] 89.61 96.34 0.0467 | 0.0518 Yes(DA) supervision
[43] 87.56 96.64 0.0602 | 0.0205 No supervision
[38] 87.27 96.53 0.0617 | 0.0180 Yes supervision
[42] 85.52 96.29 0.0722 | 0.0218 No supervision
[44] 84.71 96.40 0.0780 | 0.0244 No supervision

[61] 84.39 95.20 0.0760 | 0.0450 Yes semi-supervision
[60] 78.35 95.24 0.1197 | 0.0620 No supervision
[50] 66.06 96.51 0.2393 | 0.0316 Yes(DA) supervision
[67]1(Res34) - 96.06 - - Yes(DA) supervision
[59] 95.80 - - No supervision

The performance comparison on Tusimple is shown in
Table VII, ordered by the F1 scores. In lane marking seg-
mentation algorithms, [98] and [53] use GAN to learn the dis-
tribution of lane marking, making the algorithm have a smaller
FP and achieve the excellent F1 score. For some algorithms
based on multiple network frameworks, the best performance
has been selected for display. The anchor-based method [66]
achieves outstanding detection performance (better than a sim-
ilar method [60]) by using an attention mechanism to integrate
context information. [65] improves the detection accuracy with
the help of row classification. The novel convolution module
SCNN helps [38] obtain a very low FN, but it also misjudges
more points as lane markings, resulting in higher FP. In lane
marking regression algorithms, [64] regressed lane marking
position on segmentation feature map and partly benefited
from data augmentation, performing better than many lane
marking segmentation methods.

TABLE VIII
F1 SCORE ON THE CULANE DATASET. ALL ALGORITHMS ARE
SUPERVISED LEARNING. CR: CROSSROAD; DA: DATA AUGMENTATION.
RES34: FRAMEWORK BASED ON RESNET-34. ERFNET: FRAMEWORK
BASED ON ERFNET.

Total | Normal | Crowd | Night | No | Shadow | Arrow | Dazzle | Curve | CR | Extra da@
line light (FP) | (training)
[661(Res30) | 767 921 | 750 | 707 | 494 782 | 884 | 665 | 677 | 1330 No
[51] 748 9.7 | 723 | 689 | 494 70.1 | 858 | 677 | 684 | 1746 No
[52] 74.6 920 | 729 | 702 | 482 706 | 874 | 67.5 | 724 | 2849 | Yes(AD)
[99] 742 919 | 723 | 694 | 4638 740 | 874 | 6.1 | 664 | 2292 No
[6¢] 742 905 | 717 | 684 | 432 729 | 850 | 620 | 507 - No
[65(ERFNey) | 74.0 910 | 731 | 679 | 466 741 | 858 | 645 | 719 | 2022 No
[49] 73.1 - - - - - - - - - Yes
[47] 724 - - - - - - - - - No
[67)(Res34) | 723 9.7 | 702 | 66.7 | 444 693 | 857 | 595 | 6952037 | Yes(DA)
[3¢] 716 96 | 697 | 66.1 | 434 669 | 841 | 585 | 644 | 1990 Yes
[43] 7038 - - - - - - - - - No
[42] 68.8 884 | 670 | 641 | 429 634 | 819 | 574 | 626 | 2768 No
[50] - 90.2 69.7 67.3 | 447 68.5 84.8 59.7 69.6 1933 Yes(DA)
641 90.1 - - - - - - - Yes(DA)
[61] 859 | 636 | 578 | 406 599 | 794 | 570 | 652 | 7013 Yes

CULane consists of multiple challenging traffic scenes as
listed in Table VIII. The anchor-based attention mechanism
helps [66] achieve the best scores in most traffic scenes,
except for Dazzle light and Curve, where NAS-based [51] with
long-ranged coherent and detailed curve trajectory performs
better. Due to the deconstruction of lane markings by channel
attention, [52] obtains excellent curve detection performance.
Regarding the impact of novel convolution module on the
detection performance, SpinNet [68] is better than SCNN [38],
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because it incorporates more directional features. Compared
with self-attention distillation [43], the teacher network has a
great contribution to improving the performance of the student
network, which makes [47] achieve better detection perfor-
mance. [49] attains better performance via multi-task and
multi-resolution prediction. In short, more complex scenarios
require a richer representation of features.

VI. OUTLOOK

Intelligent driving vehicles take the safety risk due to the
uncertainty in real-world traffic scenes. As an important part
of intelligent driving risk assessment, accurate lane marking
detection can help segment and understand traffic scenes
efficiently, which is beneficial to subsequent path planning and
motion planning [21]. Existing approaches to deep learning-
based lane marking detection exploit the ability of segmen-
tation and regression networks to extract lane markings in
images. They aim to learn discriminative features of lane
markings and infer lane marking positions in a variety of
challenging scenarios. However, their performance is still only
satisfactory in simple scenes. In the case of occlusion or
missing lane markings, there remain some challenges and
opportunities for improvement.

First, many current researches are dedicated to designing
a universal lane marking detection algorithm. Such an al-
gorithm, however, often performs poorly under some special
traffic scenes (e.g., extreme weather conditions). Solutions to
specific challenging scenarios are a practically useful direction
meriting further investigation.

Secondly, lane markings have certain distributional laws,
which have not been fully exploited yet, e.g., the mutual
reasoning between lane markings to address the situations of
occlusions and missing lane markings. Hence, the contextual
structure of pixels of lane markings can be embedded in the
design of networks to enhance lane marking detection.

Thirdly, objects other than lane markings in global scenes,
such as cars and fences, can assist the detection of lane
markings. That is, the network can be designed to not only
focus on lane markings but also make more use of advanced
semantic information in the entire scene to guide detection.

Fourthly, lane marking detection has a high requirement for
both accurate detection and real-time performance and thus
an important concern about the trade-off between computing
power and algorithm complexity. Hence, we need to consider
whether the complexity of deep learning is acceptable to
embedded systems. To address this challenge, we need to
consider integrating relevant techniques, such as video sum-
marization [112], energy-friendly edge intelligence-assisted
algorithm [113] and economic hardware selection [114].

Finally, existing deep learning-based lane marking detec-
tion algorithms extremely rely on datasets. However, exist-
ing datasets will be slowly phased out with the increasing
complexity of traffic scenarios. To weaken the dependence
of datasets, improving the autonomous learning ability of the
network is an effective way of meriting investigation, e.g.,
exploring self-supervised learning in lane marking detection.

In summary, the lane marking detection research has moved
from solving problems in generally simple scenes to the stage
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where it needs to perform in complex scenes. While focusing
on improving detection performance, we also need to pay
attention to the practicality of algorithms, e.g., to reduce the
complexity of algorithms and promote real-time performance.

VII. CONCLUSION

In this paper, we review the state-of-art deep networks for
lane marking detection. We summarize the available datasets,
objective functions, evaluation criteria and data processing
techniques, and elaborate novel network designs for each of
these methods in more detail including comparing their perfor-
mances and running times. We also discuss the current status
and challenges of lane marking detection and put forward
some suggestions. To help readers quickly understand various
algorithms, some characteristics of representative methods
mentioned in this survey are summarized in Table IX.
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TABLE IX
SUMMARY OF REPRESENTATIVE METHODS. CLASSIFICATION: LANE MARKING CLASSIFICATION. THE POST-PROCESSING HERE DOES NOT INCLUDE THE
CURVE FITTING STEPS REQUIRED FOR THE CULANE DATASET.

Method Input Output Classification Supervision Dataset Pre-process | Post-process Key Words
LineNet [19] single frame ion map v supervision CULane; specific X Multiscale; Multitasking
SAD [43] single frame ion map X supervision BDDI100K; CULane; Tusimple X Self Attention Distillation
Affinity Distillation [47] single frame ion map X supervision ApolloSpape; CULane; LLAMAS X X Teacher-student Distillation
Attention DNN [67] single frame ion map v supervision CULane; Tusimple X X Self Attention; Channel Attention
SALMNet [52] single frame segmentation map X supervision BDDI100K; CULane; Tusimple X X b}gn\runl%c-gm@e(l Channel Allen}mn
yramid Deformable Convolution
LMD [45] single frame ion map X supervision Camvid X v Dilated Convolution
Multi-class ECN [97] single frame ion map v supervision specific X X Modified EDANet
SCNN [38] single frame segmentation map v supervision Cityscape; CULane; Tusimple X X Spatial CNN
SpinNet [68] single frame ion map v supervision CULane X X Spinning Convolution
GCN [/7] single frame ion map v supervision specific X X Graph Convolutional Network
EL-GAN [53] single frame ion map X semi-supervision Tusimple X X
Ripple-GAN [98] single frame ion map X semi-supervision Tusimple v X GAN
VPGNet [55] single frame ion map v supervision Caltech; VPGNet X v Vanish Point
ERFNet-VP [99] single frame ion map v supervision CULane X X Heatmap-based Vanish Point
Multitask attention network [50] single frame segmentation map v supervision KI%.EIEI[;CQ('M(\‘[:L.IES:;PIC X X Vanishing Line
Lane departure detection [100] single frame ion map X supervision specific X v Indirect Detection
Free space detection [55] single frame ion map v supervision BDDI100K X v Indirect Detection
FastDraw [61] single frame ion map X semi-supervision CULane; Tusimple X X Autoregression
CurveLane-NAS [51] single frame ion map v supervision CULane; CurveLane; Tusimple X v NAS-based
E2E-LMD [65] single frame key points v supervision CULane; Tusimple X X Row-wise Classification
LaneNet [75] single frame ion map v supervision specific v X LSTM-based
ConvLSTM [76] sequential frames ion map X supervision specific X X LSTM-based
Spatio-Temporal Network [50] sequential frames | segmentation map X supervision LLAMAS; Tusimple X X LSTM-based
Optical Lane Detection [63] sequential frames | segmentation map X supervision specific; Tusimple v v Optical Flow Estimation
Lane marking detection [106] single frame proposal anchor X supervision specific; KITTY Road X X Anchor-based
LaneATT [66] single frame key points v supervision CULane; Tusimple X v Anchor-based Attention
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End-to-end detection [59] single frame lane parameters v supervision Tusimple X v Differentiable Least-squares Fitting
Cascaded CNNs [60] single frame segmentation map v supervision Tusimple X X Cascaded CNN
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PointLaneNet [64] single frame key points v supervision CULane; Tusimple v v Regression
Agnostic lane detection [42] single frame ion map v supervision BDDI00K; CULane; Tusimple X v Multitask
Ultra Fast [07] single frame key points v supervision CULane; Tusimple v X Row-wise Classification
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