7 research outputs found

    AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion correction of multi-slice fetal brain MRI

    Full text link
    Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%

    Mitigation of DSS-Induced Colitis Potentially via Th1/Th2 Cytokine and Immunological Function Balance Induced by Phenolic-Enriched Buckwheat (Fagopyrum esculentum Moench) Bee Pollen Extract

    No full text
    Colitis is an inflammatory disease that results from the overactivation of effector immune cells, producing a high quantity of pro-inflammatory cytokines. Our study aimed to explore whether buckwheat (F. esculentum) bee pollen extract (FBPE) could inhibit the progression of dextran sulfate sodium (DSS)-induced colitis via regulating immune function. We isolated and identified six main phenolic compounds of FBPE such as luteolin (9.46 mg/g) by column chromatography, HPLC-DAD, ESI-MS and NMR spectroscopy, then assessed their effects on colonic mucosal injury by clinical symptoms, histomorphology and immunohistochemistry examinations. The results showed that FBPE at 25.2 g/kg body weight (g/kg BW) changed the clinical symptoms of colitis, the ICAM-1 expression in colon, the activity of related inflammatory mediators in colon tissue and helped restore the immune system. Compared with the model group (40.28%), the CD4 positivity was significantly reduced in the HD (High-dose group: 25.2 g FBPE/kg BW/day) group (20.45%). Administration of 25.2 g/kg BW of FBPE decreased the IFN-gamma, TNF-alpha and IL-4 levels, while enhancing the IL-10 level, and significantly inhibited the abnormally decreased IgG (Model: 13.25 mg/mL, HD: 14.06 mg/mL), showing a reversal effect on the Th1/Th2 levels in colitis. These findings suggested that FBPE at 25.2 g/kg BW had the effects of alleviating colitis and immunomodulation, which can help in the development of safe and effective immune therapy

    Heat map of the association between major soil bacterial taxa and soil chemical properties at the genus level.

    No full text
    * indicates significant correlation P<0.05; ** indicates highly significant correlation P<0.01.</p

    Effect of nitrogen reduction combined with microbial organic fertilizer on fruit yield of red raspberry.

    No full text
    Effect of nitrogen reduction combined with microbial organic fertilizer on fruit yield of red raspberry.</p

    PCoA analysis of soil bacterial community under different treatments.

    No full text
    PCoA analysis of soil bacterial community under different treatments.</p
    corecore