94 research outputs found

    Phonon-drag effects on thermoelectric power

    Full text link
    We carry out a calculation of the phonon-drag contribution SgS_g to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at high temperatures. In the linear transport limit, SgS_g is equivalent to the result obtained from the Boltzmann equation with a relaxation time approximation. The theory is applied to experiments and agreement is found between the theoretical predictions and experimental results. The role of hot-electron effects in SgS_g is discussed. The importance of the contribution of SgS_g to thermoelectric power in the hot-electron transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques

    Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field

    Full text link
    The thermoelectric power of nondegenerate Kane semiconductors with due regard for the electron and phonon heating, and their thermal and mutual drags is investigated. The electron spectrum is taken in the Kane two-band form. It is shown that the nonparabolicity of electron spectrum significantly influences the magnitude of the thermoelectric power and leads to a change of its sign and dependence on the heating electric field. The field dependence of the thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table

    Magnetothemopower study of quasi two-dimensional organic conductor α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4

    Full text link
    We have used a low-frequency magneto-thermopower (MTEP) method to probe the high magnetic field ground state behavior of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 along all three principal crystallographic axes at low temperatures. The thermopower tensor coefficients (Sxx,SyxS_{xx}, S_{yx} and SzzS_{zz}) have been measured to 30 T, beyond the anomalous low temperature, field-induced transition at 22.5 T. We find a significant anisotropy in the MTEP signal, and also observe large quantum oscillations associated with the de Haas - van Alphen effect. The anisotropy indicates that the ground state properties are clearly driven by mechanisms that occur along specific directions for the in-plane electronic structure. Both transverse and longitudinal magnetothermopower show asymptotic behavior in field, which can be explained in terms of magnetic breakdown of compensated closed orbits.Comment: 9 pages, 10 figure

    Charm System Tests of CPT and Lorentz Invariance with FOCUS

    Get PDF
    We have performed a search for CPT violation in neutral charm meson oscillations. While flavor mixing in the charm sector is predicted to be small by the Standard Model, it is still possible to investigate CPT violation through a study of the proper time dependence of a CPT asymmetry in right-sign decay rates for D0Kπ+D^0\to K^-\pi^+ and \d0b\to K^+\pi^-. This asymmetry is related to the CPT violating complex parameter ξ\xi and the mixing parameters xx and yy: ACPTReξyImξxA_{CPT}\propto{\rm Re} \xi y-{\rm Im} \xi x . Our 95% confidence level limit is 0.0068<ReξyImξx<0.0234-0.0068<{\rm Re} \xi y-{\rm Im} \xi x<0.0234. Within the framework of the Standard Model Extension incorporating general CPT violation, we also find 95% confidence level limits for the expressions involving coefficients of Lorentz violation of (2.8<N(x,y,δ)(Δa0+0.6ΔaZ)<4.8)×1016(-2.8<N(x,y,\delta)(\Delta a_0 + 0.6 \Delta a_Z)<4.8)\times 10^{-16} GeV, (7.0<N(x,y,δ)ΔaX<3.8)×1016(-7.0<N(x,y,\delta)\Delta a_X<3.8)\times 10^{-16} GeV, and (7.0<N(x,y,δ)ΔaY<3.8)×1016(-7.0<N(x,y,\delta)\Delta a_Y<3.8)\times 10^{-16} GeV, where N(x,y,δ)N(x,y,\delta) is the factor which incorporates mixing parameters xx, yy and the doubly Cabibbo suppressed to Cabibbo favored relative strong phase δ\delta.Comment: 12 pages 5 figure

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN

    Radiative Decay Modes of the D0D^{0} Meson

    Get PDF
    Using data recorded by the CLEO-II detector at CESR we have searched for four radiative decay modes of the D0D^0 meson: D0ϕγD^0\to\phi\gamma, D0ωγD^0\to\omega\gamma, D0KˉγD^0\to\bar{K}^{*}\gamma, and D0ρ0γD^0\to\rho^0\gamma. We obtain 90% CL upper limits on the branching ratios of these modes of 1.9×1041.9\times 10^{-4}, 2.4×1042.4\times 10^{-4}, 7.6×1047.6\times 10^{-4} and 2.4×1042.4\times 10^{-4} respectively.Comment: 15 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Studies of the Cabbibo-Suppressed Decays D+π0+νD^+ \to \pi^0 \ell^+ \nu and D+ηe+νeD^+ \to \eta e^+ \nu_e

    Full text link
    Using 4.8 fb1^{-1} of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay D+π0+νD^+\to\pi^0\ell^+\nu measured relative to the Cabibbo favored decay D+K0ˉ+νD^+\to\bar{K^0}\ell^+\nu is found to be 0.046±0.014±0.0170.046\pm 0.014\pm 0.017. Using VcsV_{cs} and VcdV_{cd} from unitarity constraints, we determine f+π(0)/f+K(0)2=0.9±0.3±0.3| f_+^{\pi}(0)/f_+^K(0)|^2=0.9\pm 0.3\pm 0.3 We also present a 90% confidence level upper limit for the branching ratio of the decay D+ηe+νeD^+ \to \eta e^+\nu_e relative to that for D+π0e+νeD^+ \to \pi^0 e^+\nu_e of 1.5.Comment: 10 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
    corecore