28 research outputs found

    PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCBP1 (or alpha CP1 or hnRNP E1), a member of the PCBP family, is widely expressed in many human tissues and involved in regulation of transcription, transportation process, and function of RNA molecules. However, the role of PCBP1 in CD44 variants splicing still remains elusive.</p> <p>Results</p> <p>We found that enforced PCBP1 expression inhibited CD44 variants expression including v3, v5, v6, v8, and v10 in HepG2 cells, and knockdown of endogenous PCBP1 induced these variants splicing. Invasion assay suggested that PCBP1 played a negative role in tumor invasion and re-expression of v6 partly reversed the inhibition effect by PCBP1. A correlation of PCBP1 down-regulation and v6 up-regulation was detected in primary HCC tissues.</p> <p>Conclusions</p> <p>We first characterized PCBP1 as a negative regulator of CD44 variants splicing in HepG2 cells, and loss of PCBP1 in human hepatic tumor contributes to the formation of a metastatic phenotype.</p

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 +/- 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges

    Global wheat production with 1.5 and 2.0°C above pre‐industrial warming

    Get PDF
    Efforts to limit global warming to below 2°C in relation to the pre‐industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat production and local yield variability. A multi‐crop and multi‐climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer—India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade

    The chaos in calibrating crop models

    Full text link
    Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the first steps in many applications of system models and has an important impact on simulated values. Here we propose and illustrate a novel method of developing guidelines for calibration of system models. Our example is calibration of the phenology component of crop models. The approach is based on a multi-model study, where all teams are provided with the same data and asked to return simulations for the same conditions. All teams are asked to document in detail their calibration approach, including choices with respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the advantages and disadvantages of the various choices, we propose calibration recommendations that cover a comprehensive list of decisions and that are based on actual practices.HighlightsWe propose a new approach to deriving calibration recommendations for system modelsApproach is based on analyzing calibration in multi-model simulation exercisesResulting recommendations are holistic and anchored in actual practiceWe apply the approach to calibration of crop models used to simulate phenologyRecommendations concern: objective function, parameters to estimate, software usedCompeting Interest StatementThe authors have declared no competing interest

    Data for Advancing regional projections of future warming impacts on winter wheat

    No full text
    Data for Advancing regional projections of future warming impacts on winter wheat.</p

    Aboveground Biomass in China’s Managed Grasslands and Their Responses to Environmental and Management Variations

    No full text
    Aboveground biomass (AGB) in managed grasslands can vary across a suite of environmental and management conditions; however, there lacks a quantitative assessment at the national scale of China. Although the potential effects of individual drivers (e.g., species, nutrient fertilization, and water management) have been examined in China’s managed grasslands, no attempts have been made to comprehensively assess the effects of multiple variables on AGB. Using a meta-data analysis approach, we created a database composed of AGB and associated attributes of managed grasslands in China. The database was used to assess the responses of AGB to anthropogenic factors, in addition to a suite of natural variables including climate, soil, and topography. The average AGB in managed grasslands of China is approximately 630 g m−2 of dry matter, ranging from 55 to 2172 g m−2 (95% confidence interval). Medicago sativa is the most widely planted species in China’s managed grasslands, followed by Elymus dahuricus and Bromus japonicus. The national average AGB of these three species was around 692, 530, and 856 g m−2, respectively. For each species, AGB shows a large discrepancy across different places. In general, grassland AGB depends substantially on species, environments, and management practices. The dependence can be well described by a linear mixed-effects regression in which a series of biotic and abiotic factors are used as predictors. We highlight that establishing managed grassland can potentially contribute to not only AGB enhancement, but also grassland restoration on degraded natural grasslands

    Water availability dominated vegetation productivity of Inner Mongolia grasslands from 1982 to 2015

    No full text
    Vegetation productivity is controlled by multiple climatic variables such as temperature, precipitation, and radiation, while the driving mechanism remains unclear in Inner Mongolia grasslands. Since climatic factors change geographically and seasonally, we need to know their spatiotemporal patterns and how they impact plant growth. Here, we investigated vegetation responses to climatic changes by analyzing both climatic data and NDVI (Normalized Difference Vegetation Index) for 34 years (1982 to 2015). Our results indicate that water availability dominated the variability of vegetation productivity, regardless of grassland types. The vegetation productivity was more sensitive to variations in water conditions than to variations in temperature, especially in the northern region. The results are of great significance for formulating adaptation and mitigation strategies against climate impacts on grassland productivity in Inner Mongolia and provide an invaluable comparison for grassland studies in other regions

    Fast Transit of Carbon Inputs in Global Soil Profiles Regardless of Entering Depth

    No full text
    Abstract Climate and land management changes are altering carbon inputs to soil. The consequence of such input changes on long‐term soil organic carbon (SOC) balance depends on the transit behavior of carbon inputs. Using observational carbon input and radiocarbon data in global soil profiles, we reveal that on average nearly 25% of new entering carbon leave soil in 1 year irrespective of entering depth, and the remained fraction after 30 years is only ∼13%. Nevertheless, the majority of SOC is older than 30 years in all soil depths. Together, these results demonstrate low transfer efficiency of carbon inputs to aged SOC which is the meaningful carbon component for long‐term SOC sequestration. Additionally, we reveal that SOC aging and carbon input transiting are two distinct processes, which should be simultaneously, but mechanistical‐separately, considered to predict and manage SOC dynamics in response to carbon input changes under climate and land management changes

    Rapid Discrimination and Prediction of Ginsengs from Three Origins Based on UHPLC-Q-TOF-MS Combined with SVM

    No full text
    Ginseng, which contains abundant ginsenosides, grows mainly in the Jilin, Liaoning, and Heilongjiang in China. It has been reported that the quality and traits of ginsengs from different origins were greatly different. To date, the accurate prediction of the origins of ginseng samples is still a challenge. Here, we integrated ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with a support vector machine (SVM) for rapid discrimination and prediction of ginseng from the three main regions where it is cultivated in China. Firstly, we develop a stable and reliable UHPLC-Q-TOF-MS method to obtain robust information for 31 batches of ginseng samples after reasonable optimization. Subsequently, a rapid pre-processing method was established for the rapid screening and identification of 69 characteristic ginsenosides in 31 batches ginseng samples from three different origins. The SVM model successfully distinguished ginseng origin, and the accuracy of SVM model was improved from 83% to 100% by optimizing the normalization method. Six crucial quality markers for different origins of ginseng were screened using a permutation importance algorithm in the SVM model. In addition, in order to validate the method, eight batches of test samples were used to predict the regions of cultivation of ginseng using the SVM model based on the six selected quality markers. As a result, the proposed strategy was suitable for the discrimination and prediction of the origin of ginseng samples

    Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes

    No full text
    Grassland aboveground biomass (AGB) is a critical component of the global carbon cycle and reflects ecosystem productivity. Although it is widely acknowledged that dynamics of grassland biomass is significantly regulated by climate change, in situ evidence at meaningfully large spatiotemporal scales is limited. Here, we combine biomass measurements from six long-term (> 30 years) experiments and data in existing literatures to explore the spatiotemporal changes in AGB in Inner Mongolian temperate grasslands. We show that, on average, annual AGB over the past 4 decades is 2561, 1496 and 835 kg ha(-1), respectively, in meadow steppe, typical steppe and desert steppe in Inner Mongolia. The spatiotemporal changes of AGB are regulated by interactions of climatic attributes, edaphic properties, grassland type and livestock. Using a machine-learningbased approach, we map annual AGB (from 1981 to 2100) across the Inner Mongolian grasslands at the spatial resolution of 1 km. We find that on the regional scale, meadow steppe has the highest annual AGB, followed by typical and desert steppe. Future climate change characterized mainly by warming could lead to a general decrease in grassland AGB. Under climate change, on average, compared with the historical AGB (i.e. average of 1981-2019), the AGB at the end of this century (i.e. average of 2080-2100) would decrease by 14 % under Representative Concentration Pathway (RCP) 4.5 and 28 % under RCP8.5. If the carbon dioxide (CO2) enrichment effect on AGB is considered, however, the estimated decreases in future AGB can be reversed due to the growing atmospheric CO2 concentrations under both RCP4.5 and RCP8.5. The projected changes in AGB show large spatial and temporal disparities across different grassland types and RCP scenarios. Our study demonstrates the accuracy of predictions in AGB using a modelling approach driven by several readily obtainable environmental variables and provides new data at a large scale and fine resolution extrapolated from field measurements
    corecore