
This is a repository copy of Global wheat production with 1.5 and 2.0°C above 
pre industrial warming‐ .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140894/

Version: Accepted Version

Article:

Liu, B, Martre, P, Ewert, F et al. (54 more authors) (2019) Global wheat production with 1.5
and 2.0°C above pre industrial warming. Global Change Biology, 25 (4). pp. 1428-1444. ‐

ISSN 1354-1013 

https://doi.org/10.1111/gcb.14542

© 2018 John Wiley & Sons Ltd. This is the peer reviewed version of the following article: 
Liu, B, Martre, P, Ewert, F, et al. Global wheat production with 1.5 and 2.0°C above 
pre industrial warming. Glob Change Biol. 2019; 25: 1428– 1444, which has been ‐

published in final form at https://doi.org/10.1111/gcb.14542. This article may be used for 
non-commercial purposes in accordance with Wiley Terms and Conditions for 
Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


  
 

Global Change Biology                                         Manuscript                                                                                           Page 1 
of 37 
 

Title:  Global wheat production with 1.5 and 2.0°C above pre-industrial warming 1 

Running head: Global wheat production with 1.5°C warming 2 

Paper type: Primary research article 3 

Authors 4 

Bing Liu1, Pierre Martre2, Frank Ewert3, John R. Porter4,5,6, Andy J. Challinor7,8, Christoph Müller9, Alex 5 

C. Ruane10, Katharina Waha11, Peter J. Thorburn11, Pramod K. Aggarwal12,†, Mukhtar Ahmed13,14, Juraj 6 

Balkovič15,16, Bruno Basso17,18, Christian Biernath19, Marco Bindi20, Davide Cammarano21, Giacomo De 7 

Sanctis22,‡, Benjamin Dumont23, Mónica Espadafor24, Ehsan Eyshi Rezaei3,25, Roberto Ferrise20, Margarita 8 

Garcia-Vila24, Sebastian Gayler26, Yujing Gao27, Heidi Horan11, Gerrit Hoogenboom28,27, Roberto C. 9 

Izaurralde29,30, Curtis D. Jones29, Belay T. Kassie27, Kurt C. Kersebaum31, Christian Klein19, Ann-Kristin 10 

Koehler7, Andrea Maiorano32, Sara Minoli9, Manuel Montesino San Martin4, Soora Naresh Kumar33, Class 11 

Nendel31, Garry J. O’Leary34, Taru Palosuo35, Eckart Priesack19, Dominique Ripoche36, Reimund P. 12 

Rötter37,38, Mikhail A. Semenov39, Claudio Stöckle13, Thilo Streck26, Iwan Supit40, Fulu Tao41,35, Marjin 13 

Van der Velde42, Daniel Wallach43, Enli Wang44, Heidi Webber3, Joost Wolf45, Liujun Xiao1,27, Zhao 14 

Zhang46, Zhigan Zhao47,44, Yan Zhu1,*, and Senthold Asseng27,* 15 

Affiliations   16 

1National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop 17 

System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information 18 

Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural 19 

University, Nanjing, Jiangsu 210095, P. R. China, email: yanzhu@njau.edu.cn, bingliu@njau.edu.cn, 20 

2015201079@njau.edu.cn. 21 

2LEPSE, Université Montpellier, INRA, Montpellier SupAgro, Montpellier, France, email: 22 

pierre.martre@inra.fr & maiorano.andrea@gmail.com 23 

3Institute of Crop Science and Resource Conservation INRES, University of Bonn, 53115, Germany, email: 24 

fewert@uni-bonn.de, hwebber@uni-bonn.de & eeyshire@uni-bonn.de. 25 

4Plant & Environment Sciences, University Copenhagen, DK-2630 Taastrup, Denmark, email: 26 

manuelmontesino@plen.ku.dk & jrp@plen.ku.dk. 27 

5Lincoln University, Lincoln 7647, New Zealand, email: porterj@lincoln.ac.nz. 28 

6Montpellier SupAgro, INRA, CIHEAM–IAMM, CIRAD, University Montpellier, Montpellier, France, 29 

email: John.porter@supagro.fr. 30 

7Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, 31 

Leeds LS29JT, UK, email: a.j.challinor@leeds.ac.uk, A.K.Koehler@leeds.ac.uk. 32 

8CGIAR-ESSP Program on Climate Change, Agriculture and Food Security, International Centre for 33 

Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia. 34 

mailto:fewert@uni-bonn.de


Global Change Biology                                          Manuscript                                                                         Page 2 of 37 
 

9Potsdam Institute for Climate Impact Research, Member of the Leibniz Association,14473 Potsdam, 35 

Germany, email: christoph.mueller@pik-potsdam.de, sara.minoli@pik-potsdam.de. 36 

10NASA Goddard Institute for Space Studies, New York, NY 10025, email: alexander.c.ruane@nasa.gov. 37 

11CSIRO Agriculture and Food, St Lucia, Brisbane Qld 4067, Australia, email: katharina.waha@csiro.au, 38 

peter.thorburn@csiro.au & Heidi.Horan@csiro.au. 39 

12CGIAR Research Program on Climate Change, Agriculture and Food Security, BISA-CIMMYT, New 40 

Delhi-110012, India, email: pkaggarwal.iari@gmail.com. 41 

13Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, email: 42 

stockle@wsu.edu & mukhtar.ahmed@wsu.edu, gerrit.hoogenboom@wsu.edu & prem.woli@wsu.edu. 43 

14Department of agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan, email: 44 

ahmadmukhtar@uaar.edu.pk. 45 

15International Institute for Applied Systems Analysis, Ecosyst Services and Management Program, A-2361 46 

Laxenburg, Austria, email: balkovic@iiasa.ac.at. 47 

16Department of Soil Science, Faculty of Natural Science, Comenius University in Bratislava, Bratislava 48 

84215, Slovakia, email: balkovic@iiasa.ac.at. 49 

17Department of Earth and Environmental Sciences, Michigan State University East Lansing, Michigan 50 

48823, USA, email: basso@msu.edu. 51 

18W.K. Kellogg Biological Station, Michigan State University East Lansing, Michigan 48823, USA, email: 52 

basso@msu.edu. 53 

19Institute of Biochemical Plant Pathology, Helmholtz Zentrum München—German Research Center for 54 

Environmental Health, Neuherberg, D-85764, Germany, email: biernath.christian@gmail.com, 55 

chrikle@web.de, priesack@helmholtz-muenchen.de. 56 

20Department of Agri-food Production and Environmental Sciences (DISPAA), University of Florence, I-57 

50144 Florence, Italy, email: marco.bindi@unifi.it & roberto.ferrise@unifi.it. 58 

21James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK, email: 59 

Davide.Cammarano@hutton.ac.uk.  60 

22GMO Unit, European Food Safety Authority, Via Carlo Magno 1A, Parma, IT-43126, Italy, email: 61 

giacomo.desanctis@efsa.europa.eu. 62 

23Department AgroBioChem & TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, 63 

University of Liege, Gembloux 5030, Belgium, email: benjamin.dumont@ulg.ac.be. 64 

24Department of Agronomy, University of Cordoba, 14071 Cordoba, Spain, emails: 65 

moniespadafor@gmail.com, g82gavim@uco.es. 66 



Global Change Biology                                          Manuscript                                                                         Page 3 of 37 
 

25Department of Crop Sciences, University of Göttingen, Von-Siebold-Strasse 8, 37075, Göttingen, Germany 67 

email: ehsan.eyshi-rezaei@uni-goettingen.de. 68 

26Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599 Stuttgart, Germany, 69 

email: sebastian.gayler@uni-hohenheim.de, tstreck@uni-hohenheim.de. 70 

27Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA, 71 

email: sasseng@ufl.edu & belaykassie@ufl.edu & ygao820@ufl.edu. 72 

28Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611, USA, email: 73 

gerrit@ufl.edu. 74 

29Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA, email: 75 

cizaurra@umd.edu, cujo@umd.edu. 76 

30Texas A&M AgriLife Research and Extension Center, Texas A&M Univ., Temple, TX 76502, USA. 77 

31Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, 15374 78 

Müncheberg, Germany, email: ckersebaum@zalf.de & nendel@zalf.de. 79 

32European Food Safety Authority, via Carlo Magno 1A, 43126 Parma PR, Italy, email: 80 

Andrea.MAIORANO@efsa.europa.eu. 81 

33Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, 82 

IARI PUSA, New Delhi 110 012, India, email: nareshkumar.soora@gmail.com. 83 

34Grains Innovation Park, Agriculture Victoria Research, Department of Economic Development, Jobs, 84 

Transport and Resources, Horsham 3400, Australia, email: garry.O'leary@ecodev.vic.gov.au. 85 

35Natural Resources Institute Finland (Luke), FI-00790 Helsinki, Finland, email taru.palosuo@luke.fi, 86 

fulu.tao@luke.fi. 87 

36US AgroClim, INRA, 84 914 Avignon, France, email: dominique.ripoche@inra.fr. 88 

37 University of Göttingen, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), 89 

Grisebachstraße 6, 37077 Göttingen, email: rroette@uni-goettingen.de 90 

38University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), Buesgenweg 1, 37077 91 

Göttingen, Germany  92 

39Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK, email: mikhail.semenov@rothamsted.ac.uk 93 

40Water Systems & Global Change Group and WENR(Water & Food), Wageningen University, 6700AA 94 

Wageningen, The Netherlands, email: iwan.supit@wur.nl 95 

41Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, 96 

Beijing 100101, China, email: taofl@igsnrr.ac.cn. 97 

42European Commission, Joint Research Centre, Via Enrico Fermi, 2749 Ispra, 21027 Italy, email: 98 

marijn.van-der-velde@ec.europa.eu. 99 



Global Change Biology                                          Manuscript                                                                         Page 4 of 37 
 

43UMRAGIR, 31 326 Castanet-Tolosan, France, email: daniel.wallach@inra.fr. 100 

44CSIRO Agriculture and Food, Black Mountain, ACT 2601, Australia, email: Enli.Wang@csiro.au. 101 

45Plant Production Systems, Wageningen University, 6700AA Wageningen, The Netherlands, email: 102 

j.wolf65@upcmail.nl. 103 

46State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical 104 

Science, Beijing Normal University, Beijing, China, email: zhangzhao@bnu.edu.cn. 105 

47Department of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China, 106 

email: Zhigan.Zhao@csiro.au 107 

 108 

‡The views expressed in this paper are the views of the author and do not necessarily represent the views of the 109 

organization or institution, with which he is currently affiliated. 110 

 111 

†Authors from P.K.A. to Y.Z. are listed in alphabetical order. 112 

*Corresponding author:   113 

Yan Zhu, Tel: +86-25-84396598, Fax: +86-25-84396672, Email: yanzhu@njau.edu.cn 114 

Senthold Asseng, Tel: +1-352-392-1864 x 221, Fax: +1-352-392-4092, Email: sasseng@ufl.edu 115 

  116 



Global Change Biology                                          Manuscript                                                                         Page 5 of 37 
 

Abstract 117 

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under 118 

way, in accordance with the 2015 Paris Agreement. However, most impact research on 119 

agriculture to date has focused on impacts of warming >2oC on mean crop yields, and many 120 

previous studies did not focus sufficiently on extreme events and yield interannual variability. 121 

Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis 122 

and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris 123 

Agreement range of global warming (1.5oC and 2.0oC warming above the pre-industrial 124 

period) on global wheat production and local yield variability. A multi-crop and multi-climate 125 

model ensemble over a global network of sites developed by the Agricultural Model 126 

Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major 127 

rainfed and irrigated wheat cropping systems. Results show that projected global wheat 128 

production will change by -2.3% to 7.0% under the 1.5 oC scenario and -2.4% to 10.5% under 129 

the 2.0 oC scenario, compared to a baseline of 1980-2010, when considering changes in local 130 

temperature, rainfall and global atmospheric CO2 concentration, but no changes in 131 

management or wheat cultivars. The projected impact on wheat production varies spatially; a 132 

larger increase is projected for temperate high rainfall regions than for moderate hot low 133 

rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced 134 

than in cooler regions. Despite mostly positive impacts on global average grain yields, the 135 

frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield 136 

inter-annual variability will increase under both warming scenarios for some of the hot 137 

growing locations, including locations from the second largest global wheat producer –India, 138 

which supplies more than 14% of global wheat. The projected global impact of warming <2oC 139 

on wheat production are therefore not evenly distributed and will affect regional food security 140 

across the globe as well as food prices and trade. 141 

 142 

Keywords: Wheat production, Climate change, 1.5oC warming, Extreme low yields, Food 143 

security, Model-ensemble.  144 
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Introduction 145 

The global community agreed with the Paris agreement to limiting global warming to 2.0oC, 146 

with the stated ambition to attempt to cap warming at 1.5oC (UNFCCC, 2015). While limiting 147 

the extent of climate change is critical, the more ambitious 1.5oC mitigation strategy will 148 

likely require considerable mitigation effort in the agricultural land use sector (Fujimori et al., 149 

2018), with some studies suggesting this would actually have more negative consequence for 150 

food security than climate change impacts of 2.0oC (Frank et al., 2017, Ruane et al., 2018a, 151 

van Meijl et al., 2018). However, these economic land use studies generally only consider the 152 

average effects of climate change and not the changes in yield variability and risk of yield 153 

failure, key factors constraining intensification efforts in many developing regions (Kalkuhl et 154 

al., 2016). Further such studies have generally not considered real cultivars nor typical 155 

production conditions. 156 

Agricultural production and food security is one of many sectors already affected by 157 

climate change (Davidson, 2016, Porter et al., 2014). Wheat is one of the most important food 158 

crops, providing a substantial portion of calories for about four billion people (Shiferaw et al., 159 

2013). Wheat production systems’ response to warming can be substantial (Asseng et al., 160 

2015, Liu et al., 2016, Rosenzweig et al., 2014), but restricted warming levels of < 2.0°C 161 

global warming of above pre-industrial are underrepresented in previous assessments (Porter 162 

et al., 2014). Thus, assessing the impact of 1.5 and 2.0°C global warming of above pre-163 

industrial conditions on crop productivity levels, including the potential benefits of associated 164 

carbon dioxide (CO2) fertilization, and the likelihood of extremely low yielding wheat 165 

harvests is critical for understanding the challenges of global warming for global food 166 

security. 167 

Several simulation studies have assessed the changes of global wheat production due to 168 

the changes in climate and CO2 concentration (Asseng et al., 2015, Asseng et al., 2018, 169 

Rosenzweig et al., 2014). However, previous studies have almost all considered more extreme 170 

warming and most of current studies investigated the impact of global warming >2.0oC, 171 

which means that previous impact assessments lacked details for < 2oC of warming. Also 172 

many previous studies did not focus sufficiently on extreme events and yield interannual 173 

variability (Challinor et al., 2014, Porter et al., 2014). Therefore, in terms of food security, it 174 

is important to analyze the effect of the new 1.5oC and 2.0oC warming scenarios on the 175 

interannual variability of crop production. In particular, studies on impact of 1.5°C and 2.0oC 176 

global warming on wheat production at a global and regional scale are missing.  177 
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Process-based crop simulation models, as tools to quantify the complexity of crop growth 178 

as driven by climate, soil, and management practice, have been widely used in climate change 179 

impact assessments at different spatial scales (Challinor et al., 2014, Chenu et al., 2017, 180 

Ewert et al., 2015a, Porter et al., 2014), including multi-model ensemble approaches (Asseng 181 

et al., 2015, Asseng et al., 2013, Wang et al., 2017). The multi-model ensemble approach has 182 

been proven to be a reliable method in reproducing the main effects  anticipated for climate 183 

chance when simulations are compared with field-experimental observations (including 184 

changes in temperature, heat events, rainfall, atmospheric CO2 concentration [CO2] and their 185 

interactions) (Asseng et al., 2015, Asseng et al., 2013, Asseng et al., 2018, Wallach et al., 186 

2018, Wang et al., 2017).  187 

Here, we applied a global network of 60 representative wheat production sites and an 188 

ensemble of 31 crop models (Asseng et al., 2015; Asseng et al., 2018) developed by the 189 

Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Team 190 

(Rosenzweig et al., 2013) with climate scenarios from five Global Climate Models (GCMs) 191 

from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project 192 

(Mitchell et al., 2017, Ruane et al., 2018b) to evaluate the impacts of the 2015 Paris 193 

Agreement range of global warming (1.5oC and 2.0oC warming above the pre-industrial 194 

period, referred hereafter as ‘1.5 scenario’ and ‘2.0 scenario’) on global wheat production and 195 

yield interannual variability. We hypothesize that the mean impacts of warming may not 196 

differ greatly between the two scenarios as losses due to accelerated development are 197 

compensated by gains from elevated CO2. However, we expect that the higher frequency of 198 

extreme events under 2.0°C (Ruane et al, 2018b) would result in greater damages of heat and 199 

drought stress, greater inter annual variability and higher risk of yield failures. Such 200 

information could supply important nuance in understanding the implications of the two 201 

levels of warming and associated mitigation efforts of the two warming scenarios. 202 

 203 

Materials and Methods 204 

Model inputs for global simulations 205 

An ensemble of 31 wheat crop models was used to assess climate change impacts for 60 206 

representative wheat growing locations developed by the AgMIP-Wheat team (Asseng et al., 207 

2015, Asseng et al., 2018, Wallach et al., 2018). All models in the ensemble were calibrated 208 

for the phenology of local cultivars and used site-specific soils and crop management. The 209 

multi-model ensemble used here has been tested against observed field data and showed 210 

reliable response to changing climate in several previous studies, including responses of 211 
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model ensemble to elevated CO2, post-anthesis chronic warming and different heat shock 212 

treatments during grain filling (Asseng et al., 2018, Wallach et al., 2018). Ruane et al. (2016) 213 

and Hoffman et al. (2015) showed that a multi-model ensemble can also reproduce some of 214 

observed seasonal yield variability. The 60 locations are from key wheat growing regions in 215 

the world (Table S1). Locations 1 to 30 are high rainfall or irrigated wheat growing locations 216 

representing 68% of current global wheat production. These locations were simulated without 217 

water or nitrogen limitation. Details about these locations can be found in Asseng et al. 218 

(2015). Locations 31 to 60 are low rainfall locations with average wheat yield < 4 t ha-1 and 219 

represent 32% of current global wheat production (Asseng et al., 2018). 220 

Thirty-one wheat crop models (Table S2) within AgMIP were used for assessing impacts 221 

of 1.5oC and 2.0oC global warming above pre-industrial time on global wheat production 222 

(Asseng et al., 2018). The 31 wheat crop models considered here have been described in 223 

publications. All model simulations were executed by the individual modeling groups with 224 

expertise in using the model they executed. All modeling groups were provided with daily 225 

weather data, basic physical characteristics of soil, initial soil water and N content by layer 226 

and crop management information. One representative cultivar, either winter or spring type, 227 

was selected for each location after consulting with local experts or literature. Different wheat 228 

types may be used at different locations in one country (e.g. China, Russia and U.S.A), to 229 

cover some of the possible heterogeneity in cultivar use (Table S1). Observed local mean 230 

sowing, anthesis, and maturity dates were supplied to modelers with qualitative information 231 

on vernalization requirements and photoperiod sensitivity for each cultivar. Observed sowing 232 

dates were used and cultivar parameters calibrated with the observed anthesis and maturity 233 

dates by considering the qualitative information on vernalization requirements and 234 

photoperiod sensitivity. More details about model inputs are provided in the supplementary 235 

methods and in Asseng et al. (2018). 236 

 237 

Future climate projections 238 

Baseline (1980-2010) climate data for each wheat modeling site comes from the 239 

AgMERRA climate dataset, which combines observations, reanalysis data, and satellite data 240 

products to provide daily climate forcing data for agricultural modeling (Ruane et al., 2015a). 241 

Climate scenarios here are consistent with the AgMIP Coordinated Global and Regional 242 

Assessments (CGRA) 1.5 and 2.0 ºC World study (Rosenzweig et al., 2018; Ruane et al., 243 

2018a, 2018b), utilizing the methods summarized below and in the supplementary material 244 

and fully described by Ruane et al. (2018b). Climate changes from large (83-500 member for 245 
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each model) climate model ensemble projections of the +1.5 and +2.0ºC scenarios from the 246 

Half a Degree Additional Warming, Prognosis and Projected Impacts project (HAPPI) 247 

(Mitchell et al., 2017) are combined with the local AgMERRA baseline to generate driving 248 

climate scenarios from five GCMs [MIROC5, NorESM1-M, CanAM4 (HAPPI), CAM4-249 

2degree (HAPPI), and HadAM3P] for each location (Ruane et al., 2018b). Only five GCMs 250 

here were used due to data availability at the time the study was conducted. Specifically, 251 

HAPPI ensemble changes in monthly mean climate, the number of precipitation days, and the 252 

standard deviation of daily maximum and minimum temperatures are imposed upon the 253 

historical AgMERRA daily series using quantile mapping that forces the observed conditions 254 

to mimic the future distribution of daily events (Ruane et al., 2015b; Ruane et al., 2018b). 255 

This results in climate scenarios that maintain the characteristics of local climate while also 256 

capturing major climate changes. As in previous AgMIP assessments, solar radiation changes 257 

from GCMs introduce uncertainties that can at times overwhelm the impact of temperature 258 

and rainfall changes, and thus were not considered here other than small radiation effects 259 

associated with changes in the number of precipitation days (Ruane et al., 2015b).  260 

HAPPI anticipates atmospheric [CO2] for 1.5 scenario (1.5°C above the 1861-1880 pre-261 

industrial period = ~0.6°C above current global mean temperature) (Morice et al., 2012) and 262 

2.0 scenario (2.0°C above pre-industrial = ~1.1°C above current global mean temperature) at 263 

423 ppm and 487 ppm ([CO2] in the center of the 1980-2010 current period is 360 ppm). 264 

Uncertainty around these CO2 levels from climate models’ transient and equilibrium climate 265 

sensitivity is not explored here, although [CO2] for 2.0°C warming may be slightly 266 

overestimated (Ruane et al., 2018b).  267 

This large climate × crop model setup enabled a robust multi-model ensemble estimate 268 

(Martre et al., 2015, Wallach et al., 2018) as well as analysis of spatial heterogeneity (Liu et 269 

al., 2016) and inter-model uncertainty. There were 11 treatments (baseline, five GCMs for 270 

1.5, and five GCMs for 2.0 scenario) simulated for 60 locations and 30 years (see additional 271 

detail on climate scenarios in Supplemental Material and in Ruane et al., [2018b]). 272 

 273 

Aggregation of local climate change impacts to global wheat production impacts 274 

Simulation results were up-scaled using a stratified sampling method, a guided sampling 275 

method to improve the scaling quality (van Bussel et al. 2016), with several points per wheat 276 

mega region when necessary (Gbegbelegbe et al. 2017). During the up-scaling process, the 277 

simulation result of a location was weighted by the production the location represents as 278 

described below (Asseng et al. 2015). Liu et al. (2016) recently showed that stratified 279 
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sampling with 30 locations across wheat mega regions resulted in similar temperature impact 280 

and uncertainty as aggregation of simulated grid cells at country and global scale. And Zhao 281 

et al., 2016 indicated that the uncertainty due to sampling decreases with increasing number 282 

of sampling points. We therefore doubled the 30 locations from Asseng et al. (2015) to 60 283 

locations (Supplementary Table S1) to cover contrasting conditions across all wheat mega 284 

regions. 285 

Before aggregating local impacts at 60 locations to global impacts, we determined the 286 

actual production represented by each location following the procedure described by Asseng 287 

et al. (2015). The total wheat production for each country came from FAO country wheat 288 

production statistics for 2014 (www.fao.org). For each country, wheat production was 289 

classified into three categories (i.e., high rainfall, irrigated, and low rainfall). The ratio for 290 

each category was quantified based on the Spatial Production Allocation Model (SPAM) 291 

dataset (https://harvestchoice.org/products/data). For some countries where no data was 292 

available through the SPAM dataset, we estimated the ratio for each category based on the 293 

country-level yield from FAO country wheat production statistics. The high rainfall 294 

production and irrigated production in each country were represented by the nearest high 295 

rainfall and irrigated locations (locations 1 to 30). Low rainfall production in each country 296 

was represented by the nearest low rainfall locations (locations 31 to 60).  297 

For each climate change scenario, we calculated the absolute regional production loss by 298 

multiplying the relative yield loss from the multi-model ensemble median (median across 31 299 

models and five GCMs) with the production represented at each location. Global wheat 300 

production loss was determined by adding all regional production losses, and the relative 301 

impacts on global wheat production was calculated by dividing simulated global production 302 

loss by historical global production. Similar steps with global impacts were used for 303 

calculating the impacts on country scale impacts, except that only the local impacts from 304 

corresponding locations in each country were aggregated to the country impacts. 305 

We also tested the significance of the differences in the estimated impacts and the 306 

changes of simulated yield inter-annual variability between the two warming scenarios. More 307 

detailed steps about impact aggregation and significance tests can be found in the 308 

supplementary methods. 309 

Environmental clustering of the 60 global locations 310 
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The 60 global wheat growing locations were clustered in order to analyze the results by 311 

groups of environments with similar climates (Fig. S5). A hierarchical clustering on principal 312 

components of the 60 locations was performed based on four climate variables for 1981-2010: 313 

the growing season (sowing to maturity) mean temperature, the growing season cumulative 314 

evapotranspiration, the growing season cumulative solar radiation, and the number of heat 315 

stress days (maximum daily temperature > 32°C) during the grain filling period. All data were 316 

scaled (centered and reduced to make the mean and standard deviation of data to be zero and 317 

one, respectively) prior to the principal component analysis.  318 

After determining the wheat yield impacts for each of the 1.5 and 2.0°C scenarios, yield 319 

variability for both scenarios was assessed, including the extreme low yield probability and 320 

yield interannual variability. For each location, we determined the yield threshold of the 321 

bottom 5% from the yield series for the baseline period and calculated the cumulative 322 

probability series of simulated yields under 1.5 and 2.0 °C scenarios. Next, the probability of 323 

occurrence for extreme low yield for each scenario was assessed as the corresponding 324 

cumulative probability of the yield threshold of the bottom 5% from baseline period from the 325 

cumulative probability series. Interannual yield variability was quantified as the coefficient of 326 

variation of simulated yields over the 30 year simulation period. In all cases, the multi-model 327 

median from the 31 models was employed. 328 

 329 

Results  330 

Impacts of 2015 Paris Agreement compliant warming  331 

Compared with the present baseline period (1980 to 2010; 0.67 ºC above pre-industrial) 332 

the HAPPI scenarios gave projected temperature increases of 1.1oC to 1.4oC [25% to 75% 333 

range of 60 locations] for the 60 wheat-growing locations spread over the globe under the 1.5 334 

scenario, and 1.6oC to 2.0oC under the 2.0 scenario (Fig. S1). Temperature increase during the 335 

wheat growing season (sowing to maturity) typically warm about 0.5°C less than the annual 336 

mean under both warming scenarios: 0.7oC to 1.0oC [25% to 75% range of 60 locations] 337 

under the 1.5 scenario, and 1.0oC to 1.5oC under 2.0 scenario (Fig. S2). In the HAPPI 338 

scenarios, annual rainfall is projected to increase in most of the 60 locations under both 339 

warming scenarios (Fig. S3) (Ruane et al., 2018b). 340 

Based on baseline climate conditions (1980 to 2010), we categorized the 60 wheat 341 

production sites into three environment types (temperate high rainfall, moderately hot low 342 

rainfall, and hot irrigated) (Fig. S5). Across these environments, increasing temperatures 343 

reduce wheat crop duration due to accelerated phenology (Fig.S22a). As a consequence, the 344 
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crop duration declines with future climate change scenarios compared with the baseline. For 345 

most of the locations from temperate high rainfall and moderately hot low rainfall regions, 346 

simulated cumulative growing season evapotranspiration (ET) and growing season rainfall 347 

decreased slightly under the 1.5 and 2.0 scenario (Fig. S20b an S21b). In hot irrigated regions, 348 

simulated cumulative evapotranspiration decreased (in average by -16 and -25 mm) under 349 

both warming scenarios during the crop duration (Fig. S20b), while simulated cumulative 350 

rainfall increased slightly (usually less than 10 mm) in more than half of the locations (Fig. 351 

S21b) due to projected increase in annual rainfall (Fig. S3). The decrease in cumulative ET 352 

was mostly due to shorter crop duration (in average by -4.9 and -7.2 days) due to warming, as 353 

shown with significant negative relationship between growing season cumulative ET and crop 354 

duration in all hot irrigated locations (Fig. S23). For example, cumulative ET decreased by 355 

about 2.2 mm with a shortening of the growing season by one day in Aswan, Egypt. Heat 356 

stress days (daily maximum air temperature > 32oC) (Porter and Gawith, 1999) during grain 357 

filling already occurs in almost all regions, but their frequency increases under both warming 358 

scenarios, particularly in moderately hot low rainfall (in average by 1.0 and 1.6 days) and hot 359 

irrigated locations (in average by 1.8 and 2.5 days; Fig. S22b).  360 

 361 

Simulated impacts on wheat yields for the 1.5 and 2.0 scenario (Fig.1) are negatively 362 

correlated with baseline crop season mean temperature (Fig.2a), suggesting that cooler 363 

regions will benefit more from moderate warming. For example, most locations with crop 364 

growing season mean temperature (sowing to maturity) < 15oC will have mostly positive 365 

yield changes, while for growing-season mean temperature > 15oC, any increase in 366 

temperature will reduce grain yields (Fig.2a) despite the growth-stimulation from elevated 367 

[CO2]. Generally, regions which produce the largest proportion of wheat globally are 368 

projected to have small positive yield changes under both scenarios, but there are exceptions 369 

such as India, which is currently the world’s second largest wheat producer (Fig. 2).  370 

The projected changes in growing season climate variables have a significant impact on 371 

simulated grain yield under the two warming scenarios at most global locations. As shown in 372 

Table S4, a significant negative relationship between simulated grain yield and growing 373 

season mean temperature and the number of heat stress days during grain filling were found at 374 

most locations, especially for hot irrigated locations, while a significant positive relationship 375 

between simulated grain yields and growing season cumulative ET, solar radiation and 376 

rainfall (only for rainfed locations) were found in almost all locations. For example, wheat 377 

grain yield at Griffith, Australia was projected to decrease by 0.44 t ha-1 per °C increase in 378 
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growing season mean temperature, and decrease by 0.067 t ha-1 per day increase in heat stress 379 

days, but increase by 0.008 t ha-1 per mm increase in growing season cumulative ET. In 380 

addition, shortening the growing season duration was also found to negatively impact 381 

simulated wheat yield significantly. For example, wheat yield was projected to decrease by 382 

0.1 t ha-1 per day reduction in growing season duration, in Indore, India. Growing season 383 

rainfall also showed significant positive effects on projected grain yield in most rainfed 384 

locations (Table S4), however, projected growing season rainfall declined in most locations, 385 

except for small rainfall increases in a few hot irrigated locations (Fig. S21b).  386 

 387 

When scaling up from the 60 locations, we found that wheat yields in about 80% of 388 

wheat production areas will increase under 1.5 scenario, but usually by less than 5% (Fig. 3). 389 

Largest positive impacts under 1.5 scenario are projected for USA (6.4%), the third largest 390 

wheat producer in the world. Loss in wheat yields under the 1.5 scenario is projected mostly 391 

for Central Asia, Africa and South America (Fig. 3), regions with generally high growing 392 

season temperatures, shorter crop duration, and more heat-stress days during grain filling (Fig. 393 

S14). Further yield declines in these countries are expected with the 2.0 scenario, including in 394 

large wheat producing countries like India (-2.9%; Fig. 3). 395 

Analysis for the three environment types projects a larger yield increase for temperate 396 

high rainfall regions (3.2% and 5.5% under 1.5 and 2.0 scenario, respectively) than for 397 

moderately hot low rainfall (2.1% and 2.4%) but a decline in hot irrigated regions (-0.7% and 398 

0.02%; Fig. S9 and Fig.S10). These positive values contrast with the negative trend found 399 

across a meta-analysis, with a large uncertainty range, with local temperature change of 1.5 to 400 

2.0oC, despite positive effects from elevated [CO2] (Challinor et al., 2014).  401 

Up-scaled to the globe, wheat production on current wheat-producing areas is projected 402 

to increase by 1.9% (-2.3% to 7.0%, 25th percentile to 75th percentile) under the 1.5 and by 403 

3.3% (-2.4% to 10.5%) under the 2.0 scenario (Fig. 4a and Fig.S8a). The differences in 404 

estimated ensemble median impacts between the two warming levels may be small, but 405 

significant, as indicated by a statistical test for the model ensemble median of the global 406 

impacts (P<0.001). Under the Representative Concentration Pathway 8.5 (RCP8.5) for the 407 

2050s, with a global mean temperature increase of 2.6oC above pre-industrial, global 408 

production grain yields are suggested to increase by 2.7% (Asseng et al., 2018), highlighting 409 

the non-linear nature of climate change impact.  410 

When up-scaling the impact for different wheat types (Fig.S26), the impact on global 411 

wheat production of the multi-model medians were 0.76% and 1.26% for spring wheat types 412 
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(planted at 39 global locations) under 1.5 and 2.0 scenario but 3.2% and 5.7% for winter 413 

wheat types (planted at 21 global locations), respectively. 414 

 415 

More variable yields in hot and dry areas  416 

While the 30-year average yield is projected to increase under the 1.5 and 2.0 scenario 417 

across many regions, the risk of extremely low yields may increase, especially in some of the 418 

hot-dry locations. The probability of extreme low yields (yields lower than the bottom 5-419 

percentile of the 1981-2010 distribution) will increase significantly in more than half of the 420 

moderately hot low rainfall locations under both scenarios (Fig. 5 and Fig.S19a). For the hot 421 

irrigated locations, the probability of extreme low yields will increase significantly in about 422 

half of the locations (Fig.S13 and Fig.S19a). In some hot irrigated locations, the likelihood of 423 

extreme low yields will increase by up to 5-times, that is from 5% under baseline to 11% and 424 

22% under 1.5 warming and 2.0 warming scenario, respectively, e.g. in Wad Medani from 425 

Sudan. But in other hot irrigated locations (e.g. Maricopa in U.S.A., Aswan in Egypt, and 426 

Balcarce in Argentina) and most of temperate high rainfall locations, the extreme low yield 427 

probability will decrease or remain unchanged for the two warming scenarios (Fig.S11 and 428 

Fig.S19a). The likelihood of extreme low yields will increase significantly from 1.5 warming 429 

to 2.0 warming scenario only at three locations (from 11% to 22% at Wad Medani in Sudan, 430 

from 14% to 15% at Swift Current in Canada, and from 7% to 11% at Bloemfontein in South 431 

Africa), and remain to be same at all other locations. 432 

To determine the reasons for the changes in extreme low yield probability, relationships 433 

between changes in growing season variables and changes in extreme low yield probability 434 

were quantified with linear regressions. As shown in Fig. S24, only growing season mean 435 

temperature, maximum temperature, minimum temperature, heat stress days, and cumulative 436 

rainfall (only in rainfed locations) were found to be significantly related to changes in extreme 437 

low yield probability (all P < 0.05), but with relatively poor correlation (r between 0.26 and 438 

0.61). Among these variables, growing season maximum temperature explained most of the 439 

changes in extreme low yield probability, with r= 0.54 and 0.61 for the 1.5 and 2.0 scenarios, 440 

respectively (Fig. S24). The probability of extreme low yields was projected to increase by 441 

10% and 9% per °C increase in growing season maximum temperature under 1.5 and 2.0 442 

scenarios, respectively. 443 

 444 



Global Change Biology                                          Manuscript                                                                         Page 15 of 37 
 

Under 1.5 warming scenario, the inter-annual variability of simulated grain yields was 445 

projected to increase significantly in only few locations (mostly in hot irrigated locations, 446 

Fig.S19b), while moderate warmings of 2.0°C above pre-industrial is projected to increase the 447 

inter-annual variability of simulated grain yields in about 50% of hot irrigated locations and 448 

parts of moderately hot low rainfall locations significantly, including Sudan, Bangladesh, 449 

Egypt, and India (Fig. 6). For example, inter-annual variability of simulated grain yields is 450 

projected to increase by 23% to 35% in Wad Medani from Sudan under 1.5 and 2.0 scenario, 451 

respectively. The inter-annual variability of simulated grain yields will increase significantly 452 

from 1.5 warming to 2.0 warming scenario at five moderately hot low rainfall locations and 453 

four hot irrigated locations and remain to be same at all other locations. For example, the 454 

inter-annual variability of simulated grain yields will increase 20% and 27% at Bloemfontein 455 

in South Africa under 1.5 and 2.0 scenario, respectively. No significant changes in the inter-456 

annual variability of simulated grain yields were found in most of the temperate high rainfall 457 

locations under two warming scenarios (Fig. 6 and Fig. S19b).  458 

The relationship between changes in growing season variables (including growing season 459 

duration, cumulative ET, cumulative solar radiation, cumulative rainfall, mean temperature, 460 

maximum temperature, minimum temperature, and heat stress days) and changes in yield 461 

interannual variability (CV) were also quantified with linear regressions. As shown in Fig. 462 

S25, only growing season duration, cumulative ET, and heat stress days were statistically 463 

significantly related to changes in yield interannual variability (P < 0.05), but with relatively 464 

poor correlation coefficients (0.24 < r < 0.38). Among these variables, growing season heat 465 

stress days explains most of the changes in yield interannual variability, with r =0.38 and 0.34 466 

for the 1.5 and 2.0 scenarios, respectively (Fig. S25). Yield interannual variability was 467 

projected to increase by 2.6% and 2.0% per day increase in growing season heat stress days 468 

under the 1.5 and 2.0 scenarios, respectively. 469 

 470 

Discussion  471 

With the latest climate scenarios from the HAPPI project, we used a multi-crop and 472 

multi-climate model ensemble over a global network of sites to represent major rainfed and 473 

irrigated systems to assess global wheat production and local yield interannual variability 474 

under 1.5oC and 2.0oC warming above preindustrial, which considered changes in local 475 

temperature, rainfall and global [CO2]. Under the two warming scenarios, climate impact on 476 

wheat yield can be largely attributed to elevated [CO2], shorter wheat growth duration due to 477 

increasing growing season temperature and a decrease in cumulative evapotranspiration in 478 
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most of the 60 locations (Table S4 and Fig. S20-22). In addition, even with restricted 479 

warming levels, increasing weather variability also negatively impact projected wheat 480 

production (Table S4 and Fig. S22). However, considering the uncertainty related to [CO2] in 481 

the 1.5 and 2.0°C scenarios (see below), the small differences in yield impact for the two 482 

scenarios do not allow concluding on the putative benefits of a limitation of global warming 483 

to 1.5°C compared with 2.0°C for global wheat yield production. 484 

 485 

Changes in atmospheric CO2 concentration drive the impacts of 1.5 and 2.0°C scenarios 486 

on wheat yield 487 

Using four independent methods (Liu et al., 2016, Zhao et al., 2017), global wheat yields 488 

had been previously projected to decline by an average of -5.0% for each increase in 1.0oC 489 

global warming, but in the absence of concomitant atmospheric [CO2] increase. Similar 490 

findings have been reported for various typical wheat cultivation regions in Europe when 491 

applying a systematic climate sensitivity analysis (Pirttioja et al., 2015). In a sensitivity 492 

analysis with the same crop model ensemble for the same 60 representative locations, global 493 

wheat production could increase by about 15.8% when CO2 increased from 360ppm to 494 

550ppm. The two HAPPI scenarios include 423 ppm and 487 ppm [CO2] and the impacts 495 

from CO2 fertilization under the two scenarios are a proportion of the impacts with those for 496 

550ppm [CO2]. When assuming a linear response of wheat yield to elevated CO2 (Amthor, 497 

2001), the impacts of elevated CO2 under 1.5 and 2.0 scenarios would be 5.2% and 10.5%, 498 

respectively, if nitrogen was not limiting. As the overall impacts of climate change under 1.5 499 

and 2.0 scenarios were 1.9% and 3.3%, thus, we can conclude that most of the projected 500 

increases in global wheat production under the 1.5 and 2.0 scenario can be attributed to a CO2 501 

fertilization effect (Fig. 4b and Fig.S8b). This conclusion is consistent with field observations 502 

in a range of growing environments (Kimball, 2016, O'Leary et al., 2015), and with a rate of 503 

0.06% yield increase per ppm [CO2] derived from a meta-analysis of simulation results 504 

(Challinor et al., 2014). The CO2 fertilization effect is often found to dominate model-based 505 

projections of future global wheat productivity (Rosenzweig et al., 2014, Ruiz-Ramos et al., 506 

2017, Wheeler and von Braun, 2013), but with substantial uncertainties and regional 507 

differences (Deryng et al., 2016, Kersebaum and Nendel, 2014, Müller et al., 2015). 508 

The relatively low warming levels of the HAPPI scenarios (0.6 and 1.1°C above 1980-509 

2010 global mean temperature) but high increases in [CO2] suggests that CO2 fertilization 510 

effects also dominate here (Kimball, 2016, O'Leary et al., 2015), but could be less, if nitrogen 511 

is limiting growth. However, the impacts here could be slightly overoptimistic with estimates 512 
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of heat stress, as most of crop models do not account for well-established canopy warming 513 

under elevated CO2 (Kimball et al., 1999, Webber et al., 2018). Also, Schleussner et al. 514 

(2018) have shown that CO2 uncertainties at 1.5°C and 2.0°C, which is not considered here, 515 

are comparable to the effect of 0.5°C warming increments. This indicated possible differences 516 

in impacts on wheat production in the simulated 1.5°C or 2.0°C worlds (Seneviratne et al. 517 

2018), as a transient 1.5°C or 2.0°C world may see higher CO2 concentrations because of the 518 

lagged response of the climate system (peak warming around 10 years after zero CO2 519 

emissions are reached) and differences in aerosol loadings (Wang et al., 2017). Ruane et al. 520 

(2018b) also noted uncertainties related to CO2 impacts in the 1.5°C and 2.0°C worlds, as well 521 

as peculiarities in the definition of CO2 concentrations in HAPPI. CO2 is also identified as the 522 

primary cause of increases between 1.5°C and 2.0°C worlds in Rosenzweig et al. (2018). Our 523 

study focused on stabilized 1.5 and 2.0°C worlds rather than the transient pathways that get us 524 

there, which will include gradually increasing CO2 concentrations even as some scenarios 525 

include an overshoot in global mean temperatures. Elevated CO2 concentrations are expected 526 

to have a particularly strong initial effect, although the benefits will saturate as CO2 527 

concentrations increase in RCP8.5 or other higher emission pathways. 528 

 529 

The interannual yield variability and the risk of extreme low yields will increase in a 1.5 530 

and 2.0°C world 531 

Unlike the simulated grain yield impacts, aggregating the simulated yield variability from 532 

representative locations to regions or globally with a multi-model ensemble approach has not 533 

been tested with observed data. Different aggregation method may result in different 534 

characteristics of climate-forced crop yield variance at different spatial scales. Therefore, the 535 

simulated yield variability at local scale were not aggregated to region or global scale.  536 

The fraction of yield interannual variability accounted for by weather-forced yield 537 

variability may vary substantially depending on the region (Ray et al., 2015: Ruane et al., 538 

2016); therefore, comparing simulated and observed yield interannual yield variability is 539 

critical to analyze changes in yield variability. However, there are no time series data which 540 

would allow a scientific model-observation comparison for all the 60 global locations and 541 

even for regions where historical yield records are available, they usually do not allow an 542 

evaluation of model performance due to missing information on sowing date, cultivar use, 543 

crop management of fertilizer N and irrigation, soil characteristics, initial soil conditions and 544 

bias in the reported yields (Guarin et al., 2018). While for these reasons, it is not possible for 545 

us to project meaningfully how interannual yield variability will change at regional or global 546 
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scale, our study supplies important information on how the additional half degree of warming 547 

will impact on yield variability, considering the parallel changes in mean yield levels 548 

associated with the combined warming and elevated CO2 levels. This information is urgently 549 

required by national governments and international policy makers in assessing the relative 550 

risks and costs of mitigating to 1.5°C warming versus 2.0°C warming. 551 

Here we compared our simulated interannual yield variability for the 60 global locations 552 

with the estimated global interannual yield variability from statistic yield data in Ray et al. 553 

(2015) (Fig. S27) and we found that the spatial patterns of interannual yield variability were 554 

similar for the two studies. For example, both studies showed interannual yield variability and 555 

estimated climate-induced yield variability were high at locations in southern Russia, Spain 556 

and Kazakhstan, and were small at locations in western Europe, India and some locations in 557 

China. Climate driven yield variability is generally higher in more intensive cropping 558 

systems, and many regions around the world now actively pursue intensification of currently 559 

low-yielding smallholder cropping systems. Therefore, our current projections of estimates of 560 

climate driven yield variability under the two warming scenarios may be conservative, if 561 

some regions will experience intensification and climate change simultaneously. 562 

Extreme low yielding seasons can impact the livelihood of many farmers (Morton, 2007), 563 

but also disturb global markets (e.g. Russian heat wave in 2010) (Welton, 2011), or even 564 

destabilize entire regions of the world (e.g. Arab Spring in 2011) (Gardner et al., 2015). 565 

Climate scenarios used for this study included monthly mean changes and shifts in the 566 

distribution of daily events within a season but did not include changes in interannual 567 

variability; these changes are therefore largely the result of warmer average conditions 568 

pushing wheat closer to damaging biophysical thresholds. A recent study based on the HAPPI 569 

1.5 and 2.0 scenarios also identified an increased frequency of interannual drought conditions 570 

in regions with declining or constant total precipitations (Ruane et al., 2018b), although 571 

skewness toward drought in the interannual distribution was small and highly geographically 572 

variable. 573 

Despite mostly positive impacts on average yields, projections suggest that the frequency 574 

of extreme low yields will increase under both scenarios for some of the hot growing 575 

locations (for both low rainfall and irrigated sites), including India, that currently supply more 576 

than 14% of global wheat (FAO, 2014). Similarly, an increase in the frequency of crop 577 

failures has been shown with 1.5oC global warming above the pre-industrial period for maize, 578 

millet and sorghum in West Africa (Parkes et al., 2017). On the other hand, Faye et al. (2018) 579 

did not detect a change in yield variability for the same three crops in West African between 580 
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the 1.5 and 2.0°C warming scenarios using HAPPI climate data. In our study, the change in 581 

climate extremes occurs due to projected shifts in mean temperatures (which bring wheat 582 

cropping systems closer to heat stress thresholds) as well as shifts in the distribution of daily 583 

temperatures, which can increase or decrease the frequency of future heat waves. Coupled 584 

changes in projected precipitation may also exacerbate drought and heat stress yield damage. 585 

 586 

Impact of 1.5 and 2.0°C scenarios on wheat production and food security 587 

Wheat yields have been stagnating in many agricultural regions (Brisson et al., 2010, Lin 588 

and Huybers, 2012, Ray et al., 2012). Shifting agriculture pole-wards has been considered 589 

elsewhere, but might not be always possible or feasible for adapting to increasing temperature 590 

due to land use and land suitability constrains. Measures like change in sowing date and 591 

irrigation management, improved heat- and drought-resistant cultivars, reduced trade barriers, 592 

and increased storage capacity (Schewe et al., 2017) will be necessary to adapt to changes in 593 

temperature and precipitation for improving food security. However, since the largest 594 

estimated yield losses and increased probability of extreme low yields occur in tropical areas 595 

(that is, in hot environment with low temperature seasonality) and under irrigated systems, the 596 

above mentioned measures would probably not be sufficient. Therefore, it will be challenging 597 

to find effective incremental solutions and might need to consider transformation of the 598 

agricultural systems in some regions (Asseng et al., 2013, Challinor et al., 2014). In this 599 

study, the extreme low yield probability and inter-annual yield variability of simulated yield 600 

were projected to increase significantly in parts of hot irrigated locations and moderately hot 601 

low rainfall locations, and further increase could be expected from 1.5 scenario to 2.0 602 

scenario, especially for inter-annual yield variability. This indicated that more efforts will be 603 

needed for adaptation for food security in these locations. 604 

 605 

Uncertainties 606 

Here, we up-scaled the climate warming impacts from 60 representative global locations 607 

to country and globe scales, following the approach by Asseng et al. (2015). The 60 locations 608 

were selected with local experts to be representative of each region and high-quality model 609 

inputs for each location were obtained (Supplementary Table S1). Liu et al. (2016) and Zhao 610 

et al. (2017) recently showed that up-scaled simulations for representative locations, as 611 

suggested by van Bussel et al. (2015), have similar temperature impacts to 0.5o x 0.5o global 612 

grid simulations or statistical approaches. The projected impact for spring wheat reported here 613 
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is similar to that reported by Iizumi et al. (2017), who reported global spring wheat 614 

production to increase by 1.43%-1.60% and 1.43%-1.61% under 1.5 and 2.0 scenarios using a 615 

global gridded simulation approach under different Shared Socioeconomic Pathways.  616 

To analyze risks for the extreme low yields, we used a well-tested multi-model ensemble 617 

(Asseng et al., 2013, 2015, Asseng et al., 2018, Ruane et al., 2016, Wallach et al., 2018) 618 

instead of individual wheat models, as the model ensemble has shown to reproduce observed 619 

yields and observed yield interannual variability. In Asseng et al. (2015), the multi-model 620 

ensemble median reproduced observed wheat yield under different warming treatments, with 621 

wheat growing season temperature ranging from 15oC to 32oC, including extreme heat 622 

conditions. Asseng et al. (2018) recently demonstrated that a multi-model ensemble could 623 

also simulate the impact of heat shocks and extreme drought on wheat yield. 624 

Global warming will also affect weeds, pests and diseases, which are not considered in 625 

our analysis, but could significantly impact crop production (Jones et al., 2017, Juroszek and 626 

von Tiedemann, 2013, Stratonovitch et al., 2012). Possible agricultural land use changes were 627 

not considered here, which could increase production (Nelson et al., 2014), but also accelerate 628 

further greenhouse gas emissions (Porter et al., 2017), adding to the uncertainty of future 629 

impact projections.  630 

 631 

Projections in this study were designed to be consistent with the AgMIP Coordinated 632 

Global and Regional Assessments (CGRA) of 1.5 and 2.0°C warming, and therefore add 633 

additional detail and context to linked analysis of climate, crop, and economic implications 634 

for agriculture across scales (Ruane et al., 2018a). Here, the mean impact of 1.5oC and 2.0oC 635 

warming above preindustrial on global wheat production is projected to be small but positive. 636 

In addition, the significant differences between estimated ensemble median impacts from the 637 

two warming scenarios indicate a potential yield benefit from higher global warming level. 638 

However, in our study the uneven distribution of impacts across regions, including projected 639 

average yield reductions in locations with rapid population growth (e.g. India), the increased 640 

probability of extreme low yields and a higher inter-annual yield variability, will be more 641 

challenging for food security and markets in a 2.0°C world than in 1.5°C world, particularly 642 

in hot growing locations.  643 
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Figure captions 898 

 899 

Fig.1. Impact of (a) 1.5 and (b) 2.0 scenarios on wheat grain yield for 60 representative 900 

global wheat growing locations. Relative changes of grain yield were the median across 31 901 

crop models and five GCMs, calculated with simulated 30-year mean grain yields for 902 

baseline, 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall, and 903 

atmospheric [CO2], using region-specific soils, cultivars and crop management.  904 

 905 

Fig. 2. Projected Impact of the 1.5 and 2.0 scenarios on wheat grain yield and crop 906 

duration.  Simulated change in grain yield versus (a) growing season mean temperature and 907 

(b) mean growing season duration (sowing to maturity) for the 1.5 (orange) and 2.0 (dark 908 

cyan) scenarios (HAPPI). (c) Differences in relative change in grain yield between the 1.5 and 909 

2.0 scenario versus growing season mean temperature for 60 representative wheat producing 910 

global locations. Relative changes of grain yield were the median across 31 crop models and 911 

five GCMs, calculated with simulated 30-year (1981-2010) mean grain yields for baseline, the 912 

1.5 and 2.0 scenarios (including changes in temperature, rainfall and [CO2]) using region-913 

specific soils, cultivars and crop management. The size of symbols indicates the production 914 

represented by each location (using 2014 FAO country wheat production statistics). The 915 

vertical and horizontal range crosses indicate the median 25-75% uncertainty range of relative 916 

change in grain yields, growing season mean temperature, crop duration across the 31 crop 917 

models and five GCMs, respectively. In (a), r2 of linear regressions were 0.32 and 0.33 under 918 

1.5 and 2.0 scenario, respectively (P < 0.001). 919 

 920 

Fig. 3. Simulated multi-model ensemble projection of global wheat grain production for 921 

wheat growing area per country under the 1.5 and 2.0 scenarios (HAPPI). Relative 922 

climate change impacts on grain production under (a) the 1.5 and (b) 2.0 scenarios (including 923 

changes in temperature, rainfall and [CO2]) compared with the 1981-2010 baseline. Impacts 924 

were calculated using the average over 30 years of yields and the medians across 31 models 925 

and five GCMs, using region-specific soils, current cultivars and crop management. Impacts 926 

from 60 global locations were aggregated to impacts on country production by weighting the 927 

irrigated, high rainfall, and low rainfall production, based on FAO wheat production statistics. 928 

 929 

Fig. 4. Simulated global impacts of climate change scenarios on wheat production. 930 

Relative impact on global wheat grain production for (a) 1.5 and 2.0 warming scenarios 931 
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(HAPPI) with changes in temperature, rainfall and atmospheric [CO2]. Atmospheric [CO2] for 932 

the 1.5 and 2.0 scenarios were 423 and 487 ppm, respectively. (b) Local temperature increase 933 

by +2°C (360 ppm CO2 +2oC) and +4°C (360 ppm CO2 +4oC) for the baseline period with 934 

historical [CO2] (360 ppm) and elevated [CO2] (550 ppm) for no temperature change 935 

(Baseline), +2°C (550 ppm [CO2] +2oC) and +4°C (550 ppm [CO2] +4oC). Impacts were 936 

weighted by production area (based on FAO statistics). Relative change in grain yields were 937 

calculated from the mean of 30 years projected yields and the ensemble medians of 31 crop 938 

models (plus five GCMs for HAPPI scenarios) using region-specific soils, cultivars, and crop 939 

management. Error bars are the 25th and 75th percentiles across 31 crop models (plus five 940 

GCMs for HAPPI scenarios). 941 

 942 

Fig. 5. Projected impacts of the 1.5 and 2.0 scenarios on the probability of extreme low 943 

wheat yields. (a) Grain yield distribution at three locations representative of the three main 944 

types of environments (see below) for the 1981-2010 baseline and for the 1.5 and 2.0 945 

scenarios (HAPPI; including changes in temperature, rainfall and [CO2]). The yield 946 

distribution at the 60 global sites is given in Fig. S11, Fig. S12, and Fig. S13. The vertical 947 

dashed lines indicate the value of extreme low yields (defined as the lower 5% of the 948 

distribution) for the baseline. (b) Probability of extreme low yield (≤ 5% of the baseline 949 

distribution) for the 2.0 scenario at 60 representative global wheat growing locations for 950 

clusters of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot 951 

low rainfall locations (yellow; 20 locations), and hot irrigated locations (red; 14 locations). In 952 

(b),  and indicates the changes of extreme low yield between warming scenario and 953 

baseline was significant at P < 0.05 and P < 0.01, respectively. (c) and (d) Probability of 954 

extreme low yields for each type of environment for the 1.5 and 2.0 scenario, respectively. 955 

Horizontal dashed lines are the probability of extreme low yield for the baseline (defined as 956 

the bottom 5% of the baseline distribution). Horizontal thick solid lines are the median 957 

probability of extreme low yield. The circles are the 60-global locations shown in (c and d), 958 

their size indicates the production represented at each location (using FAO country wheat 959 

production statistics) and their color the growing season mean temperature at each location for 960 

the 1.5 and 2.0 scenarios. Within each environment type, the circles have been jiggled along 961 

the horizontal axis to make it easier to see locations with similar probability values, which 962 

means that the horizontal positions of circles in each environment type were used to avoid the 963 

overlapping of circles and have no meaning. The shaded areas show the distribution of the 964 

data. Numbers above each box are the mean yields for the baseline period and in parenthesis 965 
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the average yield impacts of the 1.5 and 2.0 scenarios compared with the 1981-2010 baseline 966 

yield. See Supplementary Material and Methods for more details on clustering of wheat 967 

growing environments. 968 

 969 

Fig. 6. Projected impacts of 1.5 and 2.0 scenario on wheat yield interannual variability. 970 

(a) Relative climate change impacts for the 2.0°C warming scenarios (HAPPI) compared with 971 

the 1981-2010 baseline on interannual yield variability (coefficient of variation) at 60 972 

representative global wheat growing locations for clusters of temperate high rainfall or 973 

irrigated locations (green; 26 locations), moderately hot low rainfall locations (yellow; 20 974 

locations), and hot irrigated locations (red; 14 locations). In (a),  and indicates the 975 

changes of interannual yield variability between warming scenario and baseline was 976 

significant at P<0.05 and P<0.01, respectively. The circles and triangles showed increased 977 

and decreased interannual variability, respectively. (b) and (c) Relative climate change 978 

impacts for the 1.5 and 2.0 scenarios compared with the 1981-2010 baseline on interannual 979 

yield variability (coefficient of variation) in temperate high rainfall or irrigated (26 locations), 980 

moderately hot low rainfall (20 locations), and hot irrigated (14 locations) locations. 981 

Horizontal thick solid lines are the median change of interannual yield variability for each 982 

environment type. The circles are the 60-global locations shown in (a), their size indicates the 983 

production represented at each location (using FAO country wheat production statistics) and 984 

their color the growing season mean temperature at each location under the 1.5 and 2.0 985 

scenarios. Within each environment type the circles have been jiggled along the horizontal 986 

axis to make it easier to see locations with similar probability values, which means that the 987 

horizontal positions of circles in each environment type were used to avoid the overlapping of 988 

circles, and have no meaning. The shaded areas show the distribution of the data. 989 
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