68 research outputs found

    Self-Consistent Sources and Conservation Laws for a Super Broer-Kaup-Kupershmidt Equation Hierarchy

    Get PDF
    Based on the matrix Lie superalgebras and supertrace identity, the integrable super Broer-Kaup-Kupershmidt hierarchy with self-consistent sources is established. Furthermore, we establish the infinitely many conservation laws for the integrable super Broer-Kaup-Kupershmidt hierarchy. In the process of computation especially, Fermi variables also play an important role in super integrable systems

    Self-Consistent Sources and Conservation Laws for a Super Broer-Kaup-Kupershmidt Equation Hierarchy

    Get PDF
    Based on the matrix Lie superalgebras and supertrace identity, the integrable super Broer-Kaup-Kupershmidt hierarchy with self-consistent sources is established. Furthermore, we establish the infinitely many conservation laws for the integrable super Broer-Kaup-Kupershmidt hierarchy. In the process of computation especially, Fermi variables also play an important role in super integrable systems

    A Integrable Generalized Super-NLS-mKdV Hierarchy, Its Self-Consistent Sources, and Conservation Laws

    Get PDF
    A generalized super-NLS-mKdV hierarchy is proposed related to Lie superalgebra B(0,1); the resulting supersoliton hierarchy is put into super bi-Hamiltonian form with the aid of supertrace identity. Then, the super-NLS-mKdV hierarchy with self-consistent sources is set up. Finally, the infinitely many conservation laws of integrable super-NLS-mKdV hierarchy are presented

    A New Soliton Hierarchy Associated with so

    Get PDF
    Based on the three-dimensional real special orthogonal Lie algebra so(3,R), we construct a new hierarchy of soliton equations by zero curvature equations and show that each equation in the resulting hierarchy has a bi-Hamiltonian structure and thus integrable in the Liouville sense. Furthermore, we present the infinitely many conservation laws for the new soliton hierarchy

    Anti-tumor activity and mechanistic characterization of APE1/Ref-1 inhibitors in bladder cancer

    Get PDF
    Bladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments. Therefore, identification of innovative molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression is associated with shorter patient survival time in many cancer types. In this study, we found high APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of APE1/Ref-1 redox signaling using APE1/Ref-1-specific inhibitors attenuates bladder cancer cell proliferation in monolayer, in three-dimensional cultures, and in vivo. This inhibition corresponds with an increase in apoptosis and decreased transcriptional activity of NF-κB and STAT3, transcription factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of-care chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies. SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder cancer growth and provides compelling preclinical data using selective redox activity inhibitors of APE1/Ref-1 in vitro and in vivo

    GLM-130B: An Open Bilingual Pre-trained Model

    Full text link
    We introduce GLM-130B, a bilingual (English and Chinese) pre-trained language model with 130 billion parameters. It is an attempt to open-source a 100B-scale model at least as good as GPT-3 (davinci) and unveil how models of such a scale can be successfully pre-trained. Over the course of this effort, we face numerous unexpected technical and engineering challenges, particularly on loss spikes and divergence. In this paper, we introduce the training process of GLM-130B including its design choices, training strategies for both efficiency and stability, and engineering efforts. The resultant GLM-130B model offers significant outperformance over GPT-3 175B (davinci) on a wide range of popular English benchmarks while the performance advantage is not observed in OPT-175B and BLOOM-176B. It also consistently and significantly outperforms ERNIE TITAN 3.0 260B -- the largest Chinese language model -- across related benchmarks. Finally, we leverage a unique scaling property of GLM-130B to reach INT4 quantization without post training, with almost no performance loss, making it the first among 100B-scale models and more importantly, allowing its effective inference on 4×\timesRTX 3090 (24G) or 8×\timesRTX 2080 Ti (11G) GPUs, the most affordable GPUs required for using 100B-scale models. The GLM-130B model weights are publicly accessible and its code, training logs, related toolkit, and lessons learned are open-sourced at \url{https://github.com/THUDM/GLM-130B/}.Comment: Accepted to ICLR 202

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators
    corecore