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Based on the matrix Lie superalgebras and supertrace identity, the integrable super Broer-Kaup-Kupershmidt hierarchy with
self-consistent sources is established. Furthermore, we establish the infinitely many conservation laws for the integrable super
Broer-Kaup-Kupershmidt hierarchy. In the process of computation especially, Fermi variables also play an important role in super
integrable systems.

1. Introduction

Soliton theory has achieved great success during the last
decades; it is being applied to mathematics, physics, biology,
astrophysics, and other potential fields [1–12]. The diversity
and complexity of soliton theory enable investigators to do
research from different views, such as Hamiltonian structure,
self-consistent sources, conservation laws, and various solu-
tions of soliton equations.

In recent years, with the development of integrable sys-
tems, super integrable systems have attractedmuch attention.
Many scholars and experts do research on the topic and
get lots of results. For example, in [13], Ma et al. gave
the supertrace identity based on Lie super algebras and
its application to super AKNS hierarchy and super Dirac
hierarchy, and to get their super Hamiltonian structures, Hu
gave an approach to generate superextensions of integrable
systems [14]. Afterwards, super Boussinesq hierarchy [15]
and super NLS-mKdV hierarchy [16] as well as their super
Hamiltonian structures are presented. The binary nonlin-
earization of the super classical Boussinesq hierarchy [17], the
Bargmann symmetry constraint, and binary nonlinearization
of the super Dirac systems were given [18].

Soliton equation with self-consistent sources is an impor-
tant part in soliton theory. They are usually used to describe
interactions between different solitary waves, and they are

also relevant to some problems related to hydrodynamics,
solid state physics, plasma physics, and so forth. Some results
have been obtained by some authors [19–21]. Very recently,
self-consistent sources for super CKdV equation hierarchy
[22] and super G-J hierarchy are presented [23].

The conservation laws play an important role in dis-
cussing the integrability for soliton hierarchy. An infinite
number of conservation laws for KdV equation were first
discovered by Miura et al. in 1968 [24], and then lots of
methods have been developed to find them. This may be
mainly due to the contributions of Wadati and others [25–
27]. Conservation laws also play an important role in math-
ematics and engineering as well. Many papers dealing with
symmetries and conservation laws were presented.The direct
construction method of multipliers for the conservation laws
was presented [28].

In this paper, starting from a Lie super algebra, isospectral
problems are designed. With the help of variational identity,
Yang got super Broer-Kaup-Kupershmidt hierarchy and its
Hamiltonian structure [29].Then, based on the theory of self-
consistent sources, the self-consistent sources of super Broer-
Kaup-Kupershmidt hierarchy are obtained by us. Further-
more, we present the conservation laws for the super Broer-
Kaup-Kupershmidt hierarchy. In the calculation process,
extended Fermi quantities 𝑢

1
and 𝑢

2
play an important role;

namely, 𝑢
1
and 𝑢

2
satisfy 𝑢

2

1
= 𝑢
2

2
= 0 and 𝑢

1
𝑢
2

= −𝑢
2
𝑢
1
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in the whole paper. Furthermore, the operation between
extended Fermi variables satisfies Grassmann algebra condi-
tions.

2. A Super Soliton Hierarchy with
Self-Consistent Sources

Based on a Lie superalgebra 𝐺,

𝑒
1
= (

1 0 0

0 −1 0

0 0 0

) , 𝑒
2
= (

0 1 0

0 0 0

0 0 0

) ,

𝑒
3
= (

0 0 0

1 0 0

0 0 0

) , 𝑒
4
= (

0 0 1

0 0 0

0 −1 0

) , 𝑒
5
= (

0 0 0

0 0 1

1 0 0

)

(1)

that is along with the communicative operation [𝑒
1
, 𝑒
2
] =

2𝑒
2
, [𝑒
1
, 𝑒
3
] = −2𝑒

3
, [𝑒
2
, 𝑒
3
] = 𝑒

1
, [𝑒
1
, 𝑒
4
] = [𝑒

2
, 𝑒
5
] =

𝑒
4
, [𝑒
1
, 𝑒
5
] = [𝑒

4
, 𝑒
3
] = −𝑒

5
, [𝑒
4
, 𝑒
5
]
+
= 𝑒
1
, [𝑒
4
, 𝑒
4
]
+
= −2𝑒

2
,

and [𝑒
5
, 𝑒
5
]
+
= 2𝑒
3
.

We consider an auxiliary linear problem

(

𝜑
1

𝜑
2

𝜑
3

)

𝑥

= 𝑈 (𝑢, 𝜆)(

𝜑
1

𝜑
2

𝜑
3

) , 𝑈 (𝑢, 𝜆) = 𝑅
1
+

5

∑

𝑖=1

𝑢
𝑖
𝑒
𝑖
(𝜆) ,

(

𝜑
1

𝜑
2

𝜑
3

)

𝑡
𝑛

= 𝑉
𝑛
(𝑢, 𝜆)(

𝜑
1

𝜑
2

𝜑
3

) ,

(2)

where 𝑢 = (𝑢
1
, . . . , 𝑢

𝑠
)
𝑇
, 𝑈
𝑛
= 𝑅
1
+𝑢
1
𝑒
1
+⋅ ⋅ ⋅+𝑢

5
𝑒
5
, 𝑢
𝑖
(𝑛, 𝑡) =

𝑢
𝑖
(𝑖 = 1, 2, . . . , 5), 𝜑

𝑖
= 𝜑(𝑥, 𝑡) are field variables defining

𝑥 ∈ 𝑅, 𝑡 ∈ 𝑅; 𝑒
𝑖
= 𝑒
𝑖
(𝜆) ∈ 𝑠𝑙(3) and 𝑅

1
is a pseudoregular

element.
The compatibility of (2) gives rise to the well-known zero

curvature equation as follows:

𝑈
𝑛𝑡

− 𝑉
𝑛𝑥

+ [𝑈
𝑛
, 𝑉
𝑛
] = 0, 𝑛 = 1, 2, . . . . (3)

If an equation

𝑢
𝑡
= 𝐾 (𝑢) (4)

can be worked out through (3), we call (4) a super evolution
equation. If there is a super Hamiltonian operator 𝐽 and a
function𝐻

𝑛
such that

𝑢
𝑡
= 𝐾 (𝑢) = 𝐽

𝛿𝐻
𝑛+1

𝛿𝑢

, (5)

where

𝛿𝐻
𝑛

𝛿𝑢

= 𝐿

𝛿𝐻
𝑛−1

𝛿𝑢

= ⋅ ⋅ ⋅ = 𝐿
𝑛 𝛿𝐻0

𝛿𝑢

,

𝑛 = 1, 2, . . . ,

𝛿

𝛿𝑢

= (

𝛿

𝛿𝑢
1

, . . . ,

𝛿

𝛿𝑢
5

)

𝑇

,

(6)

then (4) possesses a superHamiltonian equation. If so, we can
say that (4) has a super Hamiltonian structure.

According to (2), now we consider a new auxiliary linear
problem. For𝑁 distinct 𝜆

𝑗
, 𝑗 = 1, 2, . . . , 𝑁, the systems of (2)

become as follows:

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

)

𝑥

= 𝑈 (𝑢, 𝜆
𝑗
)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

) =

5

∑

𝑖=1

𝑢
𝑖
𝑒
𝑖
(𝜆)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

) ,

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

)

𝑡
𝑛

= 𝑉
𝑛
(𝑢, 𝜆
𝑗
)(

𝜑
1

𝜑
2

𝜑
3

)

= [

𝑛

∑

𝑚=0

𝑉
𝑚
(𝑢) 𝜆
𝑛−𝑚

𝑗
+ Δ
𝑛
(𝑢, 𝜆
𝑗
)](

𝜑
1

𝜑
2

𝜑
3

) .

(7)

Based on the result in [30], we can show that the following
equation:

𝛿𝐻
𝑘

𝛿𝑢

+

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

= 0 (8)

holds true, where 𝛼
𝑗
are constants. Equation (8) determines a

finite dimensional invariant set for the flows in (6).
From (7), we may know that

𝛿𝜆
𝑗

𝛿𝑢
𝑖

=

1

3

𝑆 tr(Ψ
𝑗

𝜕𝑈 (𝑢, 𝜆
𝑗
)

𝜕𝑢
𝑖

)

=

1

3

𝑆 tr (Ψ
𝑗
𝑒
𝑖
𝜆
𝑗
) , 𝑖 = 1, 2, . . . 5,

(9)

where 𝑆 tr denotes the trace of a matrix and

Ψ
𝑗
= (

𝜓
1𝑗
𝜓
2𝑗

−𝜓
2

1𝑗
𝜓
1𝑗
𝜓
3𝑗

𝜓
2

2𝑗
−𝜓
1𝑗
𝜓
2𝑗

𝜓
2𝑗
𝜓
3𝑗

𝜓
2𝑗
𝜓
3𝑗

−𝜓
1𝑗
𝜓
3𝑗

0

) . (10)

From (8) and (9), a kind of super Hamiltonian soliton
equation hierarchy with self-consistent sources is presented
as follows:

𝑢
𝑛𝑡

= 𝐽

𝛿𝐻
𝑛+1

𝛿𝑢
𝑖

+ 𝐽

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

= 𝐽𝐿
𝑛 𝛿𝐻1

𝛿𝑢
𝑖

+ 𝐽

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

, 𝑛 = 1, 2, . . . .

(11)

3. The Super Broer-Kaup-Kupershmidt
Hierarchy with Self-Consistent Sources

The super Broer-Kaup-Kupershmidt spectral problem asso-
ciated with the Lie super algebra is given in [29]:

𝜑
𝑥
= 𝑈𝜑, 𝜑

𝑡
= 𝑉𝜑, (12)
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where

𝑈 = (

𝜆 + 𝑟 𝑠 𝑢
1

1 −𝜆 − 𝑟 𝑢
2

𝑢
2

−𝑢
1

0

) , 𝑉 = (

𝐴 𝐵 𝜌

𝐶 −𝐴 𝜎

𝜎 −𝜌 0

) , (13)

and 𝐴 = ∑
𝑚≥0

𝐴
𝑚
𝜆
−𝑚

, 𝐵 = ∑
𝑚≥0

𝐵
𝑚
𝜆
−𝑚

, 𝐶 =

∑
𝑚≥0

𝐶
𝑚
𝜆
−𝑚

, 𝜌 = ∑
𝑚≥0

𝜌
𝑚
𝜆
−𝑚, and 𝜎 = ∑

𝑚≥0
𝜎
𝑚
𝜆
−𝑚. As

𝑢
1
and 𝑢

2
are Fermi variables, they constitute Grassmann

algebra. So, we have 𝑢
1
𝑢
2
= −𝑢
2
𝑢
1
, 𝑢
2

1
= 𝑢
2

2
= 0.

Starting from the stationary zero curvature equation
𝑉
𝑥
= [𝑈,𝑉] , (14)

we have
𝐴
𝑚𝑥

= 𝑠𝐶
𝑚
+ 𝑢
1
𝜎
𝑚
− 𝐵
𝑚
+ 𝑢
2
𝜌
𝑚
,

𝐵
𝑚𝑥

= 2𝐵
𝑚+1

+ 2𝑟𝐵
𝑚
− 2𝑠𝐴

𝑚
− 2𝑢
1
𝜌
𝑚
,

𝐶
𝑚𝑥

= −2𝐶
𝑚+1

− 2𝑟𝐶
𝑚
+ 2𝐴
𝑚
+ 2𝑢
2
𝜎
𝑚
,

𝜌
𝑚𝑥

= 𝜌
𝑚+1

+ 𝑟𝜌
𝑚
+ 𝑠𝜎
𝑚
− 𝑢
1
𝐴
𝑚
− 𝑢
2
𝐵
𝑚
,

𝜎
𝑚𝑥

= −𝜎
𝑚+1

− 𝑟𝜎
𝑚
+ 𝜌
𝑚
− 𝑢
1
𝐶
𝑚
+ 𝑢
2
𝐴
𝑚
,

𝐵
0
= 𝐶
0
= 𝜌
0
= 𝜎
0
= 0,

𝐴
0
= 1, 𝐵

1
= 𝑠, 𝐶

1
= 𝑟,

𝜌
1
= 𝑢
1
, 𝜎

1
= 𝑢
2
, 𝐴

1
= 0, . . . .

(15)

Then we consider the auxiliary spectral problem

𝜑
𝑡𝑛

= 𝑉
(𝑛)

𝜑 = (𝜆
𝑛
𝑉)
+
𝜑, (16)

where

𝑉
(𝑛)

=

𝑛

∑

𝑚=0

(

𝐴
𝑚

𝐵
𝑚

𝜌
𝑚

𝐶
𝑚

−𝐴
𝑚

𝜎
𝑚

𝜎
𝑚

−𝜌
𝑚

0

)𝜆
𝑛−𝑚

, (17)

considering

𝑉
(𝑛)

= 𝑉
(𝑛)

+
+ Δ
𝑛
, Δ
𝑛
= −𝐶
𝑚+1

𝑒
1
. (18)

Substituting (18) into the zero curvature equation

𝑈
𝑡𝑛

− 𝑉
(𝑛)

𝑥
+ [𝑈,𝑉

(𝑛)
] = 0, (19)

we get the super Broer-Kaup-Kupershmidt hierarchy

𝑢
𝑡
𝑛

= (

𝑟

𝑠

𝑢
1

𝑢
2

)

𝑡

=
(

(

(

0 𝜕 0 0

𝜕 0 𝑢
1

−𝑢
2

0 𝑢
1

0 −

1

2

0 −𝑢
2

−

1

2

0

)

)

)

(

−2𝐴
𝑛+1

−𝐶
𝑛+1

2𝜎
𝑛+1

−2𝜌
𝑛+1

)

= 𝐽(

−2𝐴
𝑛+1

−𝐶
𝑛+1

2𝜎
𝑛+1

−2𝜌
𝑛+1

) = 𝐽𝑃
𝑛+1

,

(20)

where

𝑃
𝑛+1
= 𝐿𝑃
𝑛
,

𝐿=
(
(

(

1

2
𝜕 − 𝜕
−1

𝑟𝜕 −𝑠 − 𝜕
−1

𝑠𝜕 𝜕
−1

𝑢
1
𝜕 +
1

2
𝑢
1
𝜕
−1

𝑢
2
𝜕 −
1

2
𝑢
2

1

2
−
1

2
𝜕 − 𝑟

1

2
𝑢
2

0

−𝑢
2

2𝑢
1

−𝑟 − 𝜕 −1

𝑢
1
− 𝑢
2
𝜕 2𝑠𝑢

2
𝑠 +
1

2
𝑢
1
𝑢
2

𝜕 − 𝑟

)
)

)

.

(21)

According to super trace identity on Lie super algebras, a
direct calculation reads as

𝛿𝐻
𝑛

𝛿𝑢

= (−2𝐴
𝑛+1

, −𝐶
𝑛+1

, 2𝜎
𝑛+1

, −2𝜌
𝑛+1

)
𝑇

,

𝐻
𝑛
= ∫

2𝐴
𝑛+2

𝑛 + 1

𝑑𝑥, 𝑛 ≥ 0.

(22)

When we take 𝑛 = 2, the hierarchy (20) can be reduced to
super nonlinear integrable couplings equations

𝑟
𝑡
2

= −

1

2

𝑟
𝑥𝑥

+

1

2

𝑠
𝑥
− 2𝑟𝑟
𝑥
+ (𝑢
1
𝑢
2
)
𝑥
+ (𝑢
1
𝑢
2𝑥
)
𝑥
,

𝑠
𝑡
2

=

1

2

𝑠
𝑥𝑥

− 2(𝑟𝑠)
𝑥
+ 2𝑢
1
𝑢
1𝑥

+ 2𝑠𝑢
2
𝑢
2𝑥
,

𝑢
1𝑡
2

= 𝑢
1𝑥𝑥

−

3

2

𝑟
𝑥
𝑢
1
+

1

2

𝑠
𝑥
𝑢
2
− 2𝑟𝑢

1
𝑥

+ (𝑠 + 𝑢
1
𝑢
2
) 𝑢
2𝑥
,

𝑢
2𝑡
2

= −𝑢
2𝑥𝑥

−

1

2

𝑟
𝑥
𝑢
2
− 2𝑟𝑢

2𝑥
− 𝑢
1𝑥
.

(23)

Next, we will construct the super Broer-Kaup-Kuper-
shmidt hierarchy with self-consistent sources. Consider the
linear system

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

)

𝑥

= 𝑈(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

) ,

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

)

𝑡

= 𝑉(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

) .

(24)

From (8), for the system (12), we set

𝛿𝐻
𝑛

𝛿𝑢

=

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑢

(25)
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and obtain the following 𝛿𝜆
𝑗
/𝛿𝑢:

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑢

=

𝑁

∑

𝑗=1

(

(

(

(

(

(

(

(

(

(

𝑆 tr(Ψ
𝑗

𝛿𝑈

𝛿𝑞

)

𝑆 tr(Ψ
𝑗

𝛿𝑈

𝛿𝑟

)

𝑆 tr(Ψ
𝑗

𝛿𝑈

𝛿𝛼

)

𝑆 tr(Ψ
𝑗

𝛿𝑈

𝛿𝛽

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

2⟨Φ
1
, Φ
2
⟩

⟨Φ
2
, Φ
2
⟩

−2 ⟨Φ
2
, Φ
3
⟩

2 ⟨Φ
1
, Φ
3
⟩

)

)

)

)

,

(26)

where Φ
𝑖
= (𝜑
𝑖1
, . . . , 𝜑

𝑖𝑁
)
𝑇
, 𝑖 = 1, 2, 3.

According to (11), the integrable super Broer-Kaup-
Kupershmidt hierarchy with self-consistent sources is pro-
posed as follows:

𝑢
𝑡
𝑛

= (

𝑟

𝑠

𝑢
1𝑡

𝑢
2𝑡

)

𝑡
𝑛

= 𝐽(

−2𝐴
𝑛+1

−𝐶
𝑛+1

2𝜎
𝑛+1

−2𝜌
𝑛+1

) + 𝐽

(

(

(

(

2⟨Φ
1
, Φ
2
⟩

⟨Φ
2
, Φ
2
⟩

−2 ⟨Φ
2
, Φ
3
⟩

2 ⟨Φ
1
, Φ
3
⟩

)

)

)

)

,

(27)

where Φ
𝑖
= (𝜑
𝑖1
, . . . , 𝜑

𝑖𝑁
)
𝑇, 𝑖 = 1, 2, 3, satisfy

𝜑
1𝑗𝑥

= (𝜆 + 𝑟) 𝜑
1𝑗

+ 𝑠𝜑
2𝑗

+ 𝑢
1
𝜑
3𝑗
,

𝜑
2𝑗𝑥

= 𝜑
1𝑗

− (𝜆 + 𝑟) 𝜑
2𝑗

+ 𝑢
2
𝜑
3𝑗
,

𝜑
3𝑗𝑥

= 𝑢
2
𝜑
1𝑗

− 𝑢
1
𝜑
2𝑗
,

𝑗 = 1, . . . , 𝑁.

(28)

For 𝑛 = 2, we obtain the super Broer-Kaup-Kupershmidt
equation with self-consistent sources as follows:

𝑟
𝑡
2

= −

1

2

𝑟
𝑥𝑥

+

1

2

𝑠
𝑥
− 2𝑟𝑟
𝑥
+ (𝑢
1
𝑢
2
)
𝑥
+ (𝑢
1
𝑢
2𝑥
)
𝑥
+ 𝜕

𝑁

∑

𝑗=1

𝜑
2

2𝑗
,

𝑠
𝑡
2

=

1

2

𝑠
𝑥𝑥

− 2(𝑟𝑠)
𝑥
+ 2𝑢
1
𝑢
1𝑥

+ 2𝑠𝑢
2
𝑢
2𝑥

+ 2𝜕

𝑁

∑

𝑗=1

𝜑
1𝑗
𝜑
2𝑗

− 2𝑢
1

𝑁

∑

𝑗=1

𝜑
2𝑗
𝜑
3𝑗

− 2𝑢
2

𝑁

∑

𝑗=1

𝜑
1𝑗
𝜑
3𝑗
,

𝑢
1𝑡
2

= 𝑢
1𝑥𝑥

−

3

2

𝑟
𝑥
𝑢
1
+

1

2

𝑠
𝑥
𝑢
2
− 2𝑟𝑢

1
𝑥

+ (𝑠 + 𝑢
1
𝑢
2
) 𝑢
2𝑥

+ 𝑢
1

𝑁

∑

𝑗=1

𝜑
2

2𝑗
−

𝑁

∑

𝑗=1

𝜑
1𝑗
𝜑
3𝑗
,

𝑢
2𝑡
2

= −𝑢
2𝑥𝑥

−

1

2

𝑟
𝑥
𝑢
2
− 2𝑟𝑢

2𝑥
− 𝑢
1𝑥

− 𝑢
2

𝑁

∑

𝑗=1

𝜑
2

2𝑗
+

𝑁

∑

𝑗=1

𝜑
2𝑗
𝜑
3𝑗
,

(29)

where Φ
𝑖
= (𝜑
𝑖1
, . . . , 𝜑

𝑖𝑁
)
𝑇
, 𝑖 = 1, 2, 3, satisfy

𝜑
1𝑗𝑥

= (𝜆 + 𝑟) 𝜑
1𝑗

+ 𝑠𝜑
2𝑗

+ 𝑢
1
𝜑
3𝑗
,

𝜑
2𝑗𝑥

= 𝜑
1𝑗

− (𝜆 + 𝑟) 𝜑
2𝑗

+ 𝑢
2
𝜑
3𝑗
,

𝜑
3𝑗𝑥

= 𝑢
2
𝜑
1𝑗

− 𝑢
1
𝜑
2𝑗
,

𝑗 = 1, . . . , 𝑁.

(30)

4. Conservation Laws for the Super
Broer-Kaup-Kupershmidt Hierarchy

In the following, we will construct conservation laws of the
super Broer-Kaup-Kupershmidt hierarchy. We introduce the
variables

𝐸 =

𝜑
2

𝜑
1

, 𝐾 =

𝜑
3

𝜑
1

. (31)

From (7) and (12), we have

𝐸
𝑥
= 1 − 2𝜆𝐸 − 2𝑟𝐸 + 𝑢

2
𝐾 − 𝑠𝐸

2
− 𝑢
1
𝐸𝐾,

𝐾
𝑥
= 𝑢
2
− 𝜆𝐾 − 𝑢

1
𝐸 − 𝑟𝐾 − 𝑠𝐾𝐸 − 𝑢

1
𝐾
2
.

(32)

Expand 𝐸, 𝐾 in the power of 𝜆 as follows:

𝐸 =

∞

∑

𝑗=1

𝑒
𝑗
𝜆
−𝑗
, 𝐾 =

∞

∑

𝑗=1

𝑘
𝑗
𝜆
−𝑗
. (33)

Substituting (33) into (32) and comparing the coefficients of
the same power of 𝜆, we obtain

𝑒
1
=

1

2

, 𝑘
1
= 𝑢
2
, 𝑒

2
= −

1

2

𝑟,

𝑘
2
= −𝑢
2𝑥

−

1

2

𝑢
1
− 𝑟𝑢
2
,

𝑒
3
=

1

4

𝑟
𝑥
−

1

2

𝑢
2
𝑢
2𝑥

+

1

2

𝑟
2
−

1

2

𝑢
1
𝑢
2
−

1

8

𝑠,

𝑘
3
= 𝑢
2𝑥𝑥

+ 𝑟
𝑥
𝑢
2
+ 2𝑟𝑢

2𝑥
+

1

2

𝑢
1𝑥

+ 𝑟𝑢
1
+ 𝑟
2
𝑢
2
−

1

2

𝑠𝑢
2
, . . .

(34)
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and a recursion formula for 𝑒
𝑛
and 𝑘
𝑛

𝑒
𝑛+1

= −

1

2

𝑒
𝑛,𝑥

− 𝑟𝑒
𝑛
+

1

2

𝑢
2
𝑘
𝑛
−

1

2

𝑠

𝑛−1

∑

𝑙=1

𝑒
𝑙
𝑒
𝑛−𝑙

−

1

2

𝑢
1

𝑛−1

∑

𝑙=1

𝑒
𝑙
𝑘
𝑛−𝑙

,

𝑘
𝑛+1

= −𝑘
𝑛,𝑥

− 𝑢
1
𝑒
𝑛
− 𝑟𝑘
𝑛
− 𝑠

𝑛−1

∑

𝑙=1

𝑘
𝑙
𝑒
𝑛−𝑙

− 𝑢
1

𝑛−1

∑

𝑙=1

𝑘
𝑙
𝑘
𝑛−𝑙

,

(35)

because of

𝜕

𝜕𝑡

[𝜆 + 𝑟 + 𝑠𝐸 + 𝑢
1
𝐾] =

𝜕

𝜕𝑥

[𝐴 + 𝐵𝐸 + 𝜌𝐾] , (36)

where

𝐴 = 𝑚
0
𝜆
2
+ 𝑚
1
𝜆 +

1

2

𝑚
0
𝑠 − 𝑚
0
𝑢
1
𝑢
2
,

𝐵 = 𝑚
0
𝑠𝜆 +

1

2

𝑚
0
𝑠
𝑥
− 𝑚
0
𝑟𝑠 + 𝑚

1
𝑠,

𝜌 = 𝑚
0
𝑢
1
𝜆 + 𝑚

0
𝑢
1𝑥

− 𝑚
0
𝑟𝑢
1
+ 𝑚
1
𝑢
1
.

(37)

Assume that 𝛿 = 𝜆 + 𝑟 + 𝑠𝐸 + 𝑢
1
𝐾, 𝜃 = 𝐴 + 𝐵𝐸 + 𝜌𝐾.

Then (36) can be written as 𝛿
𝑡
= 𝜃
𝑥
, which is the right form of

conservation laws. We expand 𝛿 and 𝜃 as series in powers of
𝜆 with the coefficients, which are called conserved densities
and currents, respectively,

𝛿 = 𝜆 + 𝑟 +

∞

∑

𝑗=1

𝛿
𝑗
𝜆
−𝑗
,

𝜃 = 𝑚
0
𝜆
2
+ 𝑚
1
𝜆 + 𝑚

0
𝑠 +

∞

∑

𝑗=1

𝜃
𝑗
𝜆
−𝑗
,

(38)

where 𝑚
0
, 𝑚
1
are constants of integration. The first two

conserved densities and currents are read as follows:

𝛿
1
=

1

2

𝑠 + 𝑢
1
𝑢
2
,

𝜃
1
= 𝑚
0
(

1

4

𝑠
𝑥
− 𝑠𝑟 − 𝑢

1
𝑢
2𝑥

+ 𝑢
2
𝑢
1𝑥

− 2𝑟𝑢
1
𝑢
2
)

+ 𝑚
1
(

1

2

𝑠 + 𝑢
1
𝑢
2
) ,

𝛿
2
= −

1

2

𝑠𝑟 − 𝑢
1
𝑢
2𝑥

− 𝑟𝑢
1
𝑢
2
,

𝜃
2
= 𝑚
0
(

1

4

𝑠𝑟
𝑥
−

1

2

𝑠𝑢
2
𝑢
2𝑥

+ 𝑠𝑟
2
− 𝑠𝑢
1
𝑢
2
−

1

8

𝑠
2

−

1

4

𝑟𝑠
𝑥
+ 𝑢
1
𝑢
2𝑥𝑥

+ 𝑟
𝑥
𝑢
1
𝑢
2
+ 3𝑟𝑢

1
𝑢
2𝑥

+2𝑟
2
𝑢
1
𝑢
2
− 𝑢
1𝑥
𝑢
2𝑥

− 𝑟𝑢
1𝑥
𝑢
2
)

− 𝑚
1
(

1

2

𝑠𝑟 + 𝑢
1
𝑢
2𝑥

+ 𝑟𝑢
1
𝑢
2
) .

(39)

The recursion relation for 𝛿
𝑛
and 𝜃
𝑛
are

𝛿
𝑛
= 𝑠𝑒
𝑛
+ 𝑢
1
𝑘
𝑛
,

𝜃
𝑛
= 𝑚
0
(𝑠
𝑛+1

+

1

2

𝑠
𝑥
𝑒
𝑛
− 𝑟𝑠𝑒
𝑛
+ 𝑢
1
𝑘
𝑛+1

+ 𝑢
1𝑥
𝑘
𝑛
− 𝑟𝑢
1
𝑘
𝑛
)

+ 𝑚
1
(𝑠𝑒
𝑛
+ 𝑢
1
𝑘
𝑛
) ,

(40)

where 𝑒
𝑛
and 𝑘

𝑛
can be calculated from (35). The infinitely

many conservation laws of (20) can be easily obtained from
(32)–(40), respectively.

5. Conclusions

Starting from Lie super algebras, we may get super equa-
tion hierarchy. With the help of variational identity, the
Hamiltonian structure can also be presented. Based on Lie
super algebra, the self-consistent sources of super Broer-
Kaup-Kupershmidt hierarchy can be obtained. It enriched the
content of self-consistent sources of super soliton hierarchy.
Finally, we also get the conservation laws of the super
Broer-Kaup-Kupershmidt hierarchy. It is worth to note that
the coupling terms of super integrable hierarchies involve
fermi variables; they satisfy the Grassmann algebra which is
different from the ordinary one.
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