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Abstract

Bladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although 

cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many 

patients. The recent addition of immunotherapy has improved patient outcomes, however a large 

cohort of patients do not respond to these treatments. Therefore, identification of innovative 

molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/ redox 

factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of 

transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression 

is associated with shorter patient survival time in many cancer types. In this study, we found high 

APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of 

APE1/Ref-1 redox signaling using APE1/Ref-1 specific inhibitors attenuates bladder cancer cell 

proliferation in monolayer, in 3D cultures, and in vivo. This inhibition corresponds with an 

increase in apoptosis and decreased transcriptional activity of NFκB and STAT3, transcription 

factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream 

effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment 

of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of care 

chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. 
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Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of 

bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support 

the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies.
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INTRODUCTION

Bladder cancer (BCa) is the fourth most common malignancy and eighth leading cause of 

cancer-related death of men in the United States and the ninth most common cancer 

worldwide, with an estimated 430,000 new cases and 165,000 deaths annually (1, 2). 

Twenty-three percent of bladder cancer patients die within 5 years of diagnosis from the 

disease (2). Bladder cancer deaths are primarily caused by forms of the disease that are 

inherently refractory, or become refractory, to the current standard-of-care options such as 

platinum-based chemotherapy for muscle invasive bladder cancers (3). In the last five years, 

there has been the development of PD-1/PD-L1 immunotherapy that has led to a 20-30% 

response in cisplatin refractory disease (4). Despite this, there is still a large cohort of 

refractory disease in which no effective therapy options exist. Consequently, there is a need 

to discover new therapeutic drug options and combinations that target and kill BCa cells 

with this resistant phenotype.

Apurinic/apyrimidinic endonuclease 1/ redox factor 1 (APE1/Ref-1) is a multifunctional 

protein involved in both DNA repair and reduction-oxidation (redox) regulation of 

transcription factors (5, 6). APE1/Ref-1 is a major enzyme in the DNA base excision repair 

(BER) pathway responsible for the repair of oxidative and alkylation DNA damage (5, 6). 

This protein also plays a critical role in transcription factor function by regulating the redox 

signaling of transcription factors (TFs) via reduction of cysteine residues that affect the 

ability of TFs to bind to DNA and activate gene expression (7). Additionally, APE1/Ref-1 

has been shown to interact with NPM1, directly acting upon RNA quality control 

mechanisms (8). Subsequently, APE1/Ref-1 protein performs multiple major functions in 

cells that affect a number of cellular processes including cell proliferation and cell survival.

APE1/Ref-1 expression is associated with shorter median patient survival time in many 

cancer types (8-12). While a basal level of APE1/Ref-1 expression is indispensable to all 

cells due to its critical role in DNA repair, expression is upregulated in many tumor types, 

including bladder cancer (9, 13). As the DNA repair function requires nuclear localization, it 

is of note that cytosolic localization of APE1/Ref-1 is inversely-correlated with tumor 

sensitivity to radiation and chemotherapy (12, 14, 15). This suggests the importance of 

cellular localization for the protein in cancer and non-repair functions. Redox regulation of 

TFs has been implicated in the development and progression of various cancer types, and 

inhibition of APE1/Ref-1 redox activity has been shown to reduce inflammatory, 

angiogenesis, growth-promoting, and anti-apoptotic activity in cancer cells (16, 17). Redox-

specific inhibition by small molecule inhibitors APX3330 or APX2009 of APE1/Ref-1 has 
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been shown to attenuate the proliferation of breast, colon, pancreatic, and prostate cancers 

(18-23).

Two of the primary TF targets of APE1/Ref-1 redox regulation are the ubiquitous factors 

NFκB and STAT3 (7, 24). These two central transcription factors have been shown to 

regulate proliferation and survival in multiple cancers, as well as playing a role in cancer 

progression, signaling within the microenvironment, and resistance to chemotherapy (25). 

NFκB and STAT3 drive the expression of a number of critical signaling molecules in cell 

proliferation and cell survival, including cyclin D1, myc, Bcl-2, Mcl-1 and the Inhibitor of 

Apoptosis (IAP) family member, survivin. Therefore, reduction of the activity of NFκB and 

STAT3 has dynamic effects on cancer cells, and targeting APE1/Ref-1 as a master regulator 

of the activity of these pathways is a promising approach in cancer therapy as APE1/Ref-1 

inhibitior, APX3330 has recently completed Phase I clinical trials () (26, 27).

Patients with urinary bladder cancer exhibit increased levels of APE1/Ref-1 in their serum 

and their urine, and APE1/Ref-1 levels correlated with tumor stage and grade suggesting 

APE1/Ref-1 may act as a biomarker in bladder cancer (9, 13). However, a characterization 

of APE1/Ref-1 expression and activity in bladder cancer tissue has not been reported. To 

address this deficiency, we examined APE1/Ref-1 expression in control benign bladder 

tissue and bladder cancer tissue as well as constructing a tissue array from over 36 patients 

with cisplatin-refractory bladder cancer from cystectomy specimens. APE1/Ref-1 expression 

was robust in the majority of patient tumor samples compared to benign. Assessment of 

potency and efficacy of APE1/Ref-1 redox-selective inhibitors in preclinical experimental 

bladder cancer models is lacking, leaving APE1/Ref-1 inhibition as an untapped opportunity 

in bladder cancer therapy. Here, we report that inhibition of APE1/Ref-1 redox-specific 

signaling attenuates bladder cancer cell proliferation in monolayer, in 3D cultures and in 
vivo, induces apoptosis and blocks cancer cell proliferation, decreases the transcriptional 

activity of NFκB and STAT3, and thereby decreases expression of key survival proteins in 
vitro and in vivo. One of these proteins was survivin. Survivin is known to be induced 

during bladder cancer (28-31), and over the past year has become the focus of intense 

screening as a functional biomarker for the disease. Finally, we show that in vitro treatment 

with APE1/Ref-1 redox inhibitors in combination with the current standard-of care, 

cisplatin, is more effective than cisplatin alone.

MATERIALS AND METHODS

Human Specimens

We used two sets of paraffin-embedded human specimens for assessment of APE1/Ref-1 

and target protein assessment by histology. In Set one (Figure 1B, C, Supplemental Figure 

1), used for APE1/Ref-1 Immunofluorescence, specimens were obtained from patients 

undergoing cystectomy for muscle invasive bladder cancer, and controls were obtained as 

freshly harvested cadaveric specimens (Figure 1A, n=12). All human specimens were 

collected with written informed consent, and with appropriate minimal risk institutional 

review board approval according to the approval and guidelines at Indiana University School 

of Medicine, and in accordance with the ethical standards of the Declaration of Helsinki. 

These controls (average age 68 ± 8yrs) were age-matched to the bladder cancer specimens 
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(64± 8yrs) and were confirmed by histology to be free from malignant or inflammatory 

bladder disease. The controls used in this analysis were verified by pathology to be void of 

bladder cancer or bladder inflammatory diseases. Specimens were fixed in 10% buffered 

formalin, processed routinely through ethanol and xylene gradients and into paraffin, and 

embedded in paraffin blocks as previously described. Sections were made at 5 μm via 

microtome cutting. All human specimens were stained with APE1/Ref-1 antibodies and 

known target proteins of APE1/Ref-1 signaling for immunofluorescence or 

immunohistochemistry, as described below. In addition, basic histology of these specimens 

was performed by hematoxylin and eosin (H&E) staining; this was used to assess any 

underlying inflammation and the pathological features of bladder tumors or any underlying 

pathology that may have been present in the controls, which disqualified them from use.

A second set of patient samples was collected from bladder tumors in patients with muscle 

invasive bladder cancer (Figure 1D, E). A human cisplatin-refractory bladder cancer tissue 

microarray (CisR-TMA) was created from this cohort of 36 patients that were noted to have 

residual disease at time of cystectomy despite preoperative neoadjuvant cisplatin-

combination chemotherapy. As with the human sample set described above, specimens for 

the CisRef-TMA were obtained with proper written informed consent and appropriate 

minimal risk institutional review board approval according to the approval and guidelines at 

Indiana University School of Medicine, and in accordance with the ethical standards of the 

Declaration of Helsinki. Bladder tumor specimens for the CisR-TMA were obtained in 

duplicate 3mm cores from formalin fixed paraffin embedded cystectomy samples. A total of 

36 separate patient samples were obtained, all of which were treated with preoperative 

cisplatin-combination chemotherapy. The average age was 64±8 yrs, 19% were female, and 

cystectomy surgery was performed between 2007-2017. Median survival after cystectomy 

was 33±12 months, with greater than 70% of patients undergoing additional systemic 

treatments in the adjuvant setting or at time of relapse. Tissues were fixed at room 

temperature overnight in 10% NBF (neutral buffered formalin), and processed routinely 

through ethanol into Xylene. Processed tissues were embedded in paraffin and cut on a 

microtome into 5-micron sections, mounted on positively charged slides and baked at 60°C. 

Sections from the CisRef-TMA were stained with the APE1/Ref-1 antibody by the Indiana 

University School of Medicine Research Immunohistochemistry Facility (Indianapolis, IN) 

and quantified using the HALO image analysis platform (Indica Labs) by Dr. George 

Sandusky. Basic histology of these specimens was performed by H&E staining; this was 

used to assess any underlying inflammation and the pathological features of bladder tumors 

or any underlying pathology that may have been present in the controls, which disqualified 

them from use. H&E analysis revealed that the tumors exhibited mostly epithelially confined 

loci of tumors, but all had some elements of invasive lesion formation consistent with 

clinical expectiations of specimens from patients that have failed cisplatin therapy.

Immunofluorescence and Immunohistochemistry (IHC)

Immunofluorescence protocols were followed as previously described (32). Sections were 

processed routinely and subjected to heat-induced antigen retrieval in 10 mM citrate buffer. 

Sections were blocked at ambient temperature with a bovine serum albumin (BSA)-Donkey 

serum blocking medium for 2-4 hours, and incubated with the same blocking medium 
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containing the indicated primary antibodies overnight at 4 ˚C. Primary antibodies and 

dilutions included rabbit survivin (1:100, Cell Signaling Technologies), mouse APE1/Ref-1 

(1:200, Novus Biologicals), rabbit BrdU (1:200, Cell Signaling Technologies), and mouse 

PanCK (1:200, Cell Signaling Technologies). After incubation, all sections were washed 

with 1X PBS -Tween and incubated with blocking medium containing with the species-

specific (Invitroge) IgG Alexa 488 and IgG Alexa 594-conjugated secondary antibody 

targeting rabbit or mouse for 1 hour at room temperature at a dilution of 1:200 as previously 

optimized (32). Nuclei were stained by incubation with Hoechst 33258 nuclear stain Sigma) 

at a concentration of 1 μg/ml. Tissues were again washed and covered with aqueous medium 

and glass coverslips. All specimens were visualized using immunofluorescence intensity 

with the Leica 6000 epifluorescence/confocal microscope. IHC was conducted as previously 

published for APE1/Ref-1 (10).

Drugs

APX3330, which was previously named E3330, was synthesized and used as previously 

described (22). APX2009 and APX2014 were kind gifts from Apexian Pharmaceuticals 

LLC (Indianapolis, IN). Synthesis, description, and molecular target verification of 

APX2009, APX2014, and RN7-58 have been previously described (16, 33, 34). The 

concentrations defined in this study are within the specific activivity concentration range of 

each inhibitor, as described in previous studies (11, 16, 18, 19, 21, 33). Additionally, the 

concentrations are within the achieveable levels in patients. Molecular target confirmation is 

routinely done via assessment of protein or gene expression of known pathway targets (18, 

21, 24, 35, 36).

Cells in culture

The following cell lines were obtained from the ATCC in 2016 and have been maintained in 

our laboratory since: Grade 3/4 transitional cell carcinoma (TCC) line UC3; Grade 3 

papillary urothelial carcinoma T24; Grade 1 TCC line SW-780; Grade 1 papillary urothelial 

RT-4; squamous bladder cancer line SCaBER; and non-cancerous human urothelial cell 

(HUC). Cells were grown in RPMI medium supplemented with antibiotic and 10% fetal 

bovine serum (FBS) for 2 passages, after which stocks were made and deep frozen in liquid 

nitrogen. From these laboratory stocks, cells for all experiments have been recultured, with a 

maximum of 10 passages performed before returning to the laboratory stocks for fresh 

cultures. All cells are authenticated regularly (1x per year) to verify cell line integrity at the 

University of Arizona Genetics Core: (https://uagc.arl.arizona.edu/cell-line-authentication), 

and all are routinely tested and verified as mycoplasma-free.

Alamar blue assay

Bladder cancer cell lines (BLCAb001 (RP-B-01) and BLCAb002 (RP-B-02) (37, 38)) 

maintained in RPMI growth medium with 10% FBS were plated at 4,000 cells/well in poly-

D-lysine treated 96-well clear bottom black plates and grown overnight in 5% CO2 at 37°C. 

Cells in monolayer were then treated with increasing concentrations of redox-specific 

inhibitor APX3330, APX2014 or APX2009 and serially diluted 1:2 in a 5-point dose 

scheme. For combination studies, cells were treated with both cisplatin and APX compounds 

to determine efficacy. After 72 hours, fresh RPMI medium with 5% FBS was exchanged, 
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and a fluorescent metabolic indicator, Alamar Blue was added to each well at 10% final 

concentration. After a 4 hour incubation, plates were read on a Synergy H4 (Bio-Tek) plate 

reader. For each drug dose, background was subtracted and then further normalized to media 

alone.

BrdU labeling and proliferation quantification

To determine the proliferation rate of cells in response to APE1/Ref-1 redox inhibitors, cells 

were grown in the culture conditions described above and treated with inhibitors as 

described above, in chamber slides. After 24 hours in culture with inhibitors or vehicle, all 

cells were treated with 3.1 μg/ml BrdU (in sterile PBS; 0.1%) for one hour. Cells were fixed 

and permeablized with 4 % paraformaldehyde and stained for BrdU incorporation with the 

antibody and methodology described in the Roche BrdU labeling Kit, (Risch-Rotkreuz, 

Switzerland), using secondary antibodies as described previously (39). Positive cells were 

captured on a Leica 6000 fluorescent microscope and were quantified relative to Hoechst 

positive nuclei (total live cells).

Apoptosis labeling via Incucyte Caspase-3/7 reagent

UC3 and T24 cells were plated in 96-well plates at 3,500 cell/well and allowed to attach 

overnight. Increasing amounts of APX2009 or APX2014 were added to each well along with 

1μM of the caspase reagent (Caspase-3/7 Red, Essen Bioscience) and then the cells were 

allowed to recover for 2 hours prior to beginning imaging with the Incucyte system (Essen 

Bioscience). Each well was imaged for phase contrast as well as red fluorescence every 2 

hours for 96 hours. The Incucyte software generated movies of the cells following treatment 

as well as real-time imaging data with red fluorescence normalized to the percent confluency 

of the well.

Transfection of APE1/Ref-1 siRNA

All siRNA transfections in T24, UC3, RP-B-01 and RP-B-02 cells were performed using the 

Lipofectamine RNAimax Reagent (Thermofisher) protocol as previously described (10, 11, 

21, 24). The APE1/Ref-1 siRNA sequences were: #1) GTCTGGTACGACTGGAGTA and 

#2) Life Technologies Cat #s1446 CAGATATACTGTGCCTTCA. Twenty four hours post 

transfection, cells (1,500/well) were replated in xCELLigence plates, and growth was 

measured in real time using the xCELLigence RTCA system (18, 24). For the RP-B-02 cell 

line, 1,500 cells/well were replated in 96-well black plates and cell growth determined over 

five days using the Alamar blue assay. Alamar blue assay was used with the RP-B-02 cells 

due to the fact that they did not attach and proliferate proficiently on the xCELLigence 

plates. Samples for western blotting were collected 72 and 144 hours post transfection of 

cancer cells with APE1/Ref-1 siRNA and scrambled siRNA control.

Western blot

Whole cell extracts were prepared using RIPA (radioimmunoprecipitation) buffer containing 

protein inhibitors (1:100 PMSF, 1:100 orthovanadate and 1:100 protease inhibitor). Total 

protein concentration was determined via Lowry or BCA assay. 10-50 μg/well of each lysate 

was separated by SDS-PAGE using a 12% SDS-polyacrylamide gel. Blots were blocked 
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with 5% nonfat dry milk in 1xTBS for 1 h and incubated overnight with primary antibodies 

to either APE1/Ref-1 (1:1000 dilution, Novus, NB-100-116), survivin (1:1000, Cell 

Signaling), Cyclin D1 (1:500, Abcam), PARP-1 (1:1000, Cell Signaling) or GAPDH 

(1:5000, Cell Signaling). After blots were washed three - six times with TBS-Tween, blots 

were incubated with HRP-conjugated secondary mouse antibodies (1:5000, Pierce). After 

washing three - six times with TBS-Tween, blots were visualized by enhanced 

chemiluminescence (West Pico/West Femto, Pierce).

Three-dimensional (3D) Spheroid Growth Assays

RP-B-01 and RP-B-02 cells were resuspended in normal growth media containing 3% 

Reduced Growth Factor Matrigel (BD Biosciences) at a cell density of 1,500 and 3,000 

cells/well, respectively and plated in ultra-low adherence 96-well plates (Corning). After 

spheroid formation, APE1Ref-1 inhibitors were added on days 4, 8, and 12 as described in 

Arpin, et al (40). On Day 15, Alamar blue reagent (LifeTechnologies) was added to each 

well (10 μL/well) and all wells were incubated for 24 hours. IC50 values were calculated for 

each compound and the linear regression model was employed to generate a line of best fit, 

wherein the percent survival equaled 50% (n=3-4).

In vivo subcutaneous tumor

107 T24 human bladder cancer cells were grown in conditions described above and 

harvested with 0.05% Trypsin, centrifuged, and resuspended in a 50:50 solution of Matrigel: 

RPMI medium. For each subcuetaneous tumor, a 100 μl volume of this suspension was 

implanted in the hind flank of male athymic nude male and female mice. Previous 

characterization of the T24 model indicated that log phase was entered when tumor volumes 

reached 65 to 150 mm3 (between 2-4 weeks post-implant to reach log phase). At this point 

and individual for each animal, the animals were treated with either 50 mg/kg APX3330, 25 

mg/kg IP APX2009 or vehicle (both in Cremophor ethanol (4% in PBS)) every 12 hours for 

up to 12 days. BrdU was injected into the animals 2 hours prior to sacrifice and tumor 

tissues were harvested and split into either snap frozen tissues for protein harvest and 

molecular analysis or fixed in formalin and processed for histological analysis, and then 

analyzed for survivin, Cyclin D1 levels (immunofluorescence and immunoblotting) for 

target protein assessment and BrdU incorporation (immunofluorescence).

Statistical analysis

IC50 values for all dose response curves were calculated using ANOVA with Tukey post hoc 

analysis of all cell lines in monolayer and 3D cultures. The caspase time course curves were 

analyzed using Prism 6 software and generating linear regression curves for each treatment. 

The linear regression data indicated that all slopes were significantly different from each 

other and from vehicle control (p<0.05, n=2-4).
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RESULTS

APE1/Ref-1 is highly expressed in bladder cancer compared to benign bladder urothelium 
and in multiple bladder cancer cells lines.

To investigate APE1/Ref-1 redox signaling in bladder cancer, we obtained bladder cancer 

patient samples and stained for APE1/Ref-1 via immunofluorescence (IF, Figure 1, A-C) as 

well as immunohistochemistry (IHC, Figure 1D, E). Benign bladder urothelium has low 

nuclear staining in the urothelium (Figure 1A, representative of n=12). Strong nuclear 

fluorescence is observable in the tumor cell epithelia in all bladder cancer cases examined 

(Figure 1B, C), representative of twelve specimens from bladder cancer, See Supplemental 

Figure 1 for additional staining). Expression is primarily nuclear in non-invasive tumors as 

determined by the presence of satellite lesions in the muscularis of the tissue by H&E 

(Figure. 1B), but exhibits both nuclear and a stronger cytosolic pattern in invasive lesions 

where microsatellite growths occur in detrusor muscle (Figure. 1C, Supplementary Figure 

1). In calculation, 77±11% of cells in muscle-invaded satellite lesions exhibit nuclear 

staining while 2.8±0.6% exhibit any detectable cytosolic staining by ImageJ.

APE1/Ref-1 protein expression in cisplatin-refractory patient samples.

We obtained 36 cisplatin-refractory patient samples, constructed a TMA (tissue microarray), 

and performed IHC staining of APE1/Ref-1. Figure 1D & E confirm the intense nuclear 

staining in the tumor cells within samples in the TMA, as well as the nuclear localization of 

APE1/Ref-1 in urothelial-confined tumor (Figure. 1D) with a stronger cytosolic expression 

in invasive tumor in addition to nuclear APE1/Ref-1 expression (Fig.1E, n=36). This trend 

of an increase in cytosolic APE1/Ref-1 expression has also been observed in ovarian and 

prostate cancer (12, 14). Samples within The Cancer Genome Atlas (TCGA) confirmed that 

APE1/Ref-1 mRNA (APEX1) is significantly upregulated in bladder cancer patients 

compared to matched control (Figure 1F, p=1.68e-05, Mann Whitney test). RNA-seq V2 

data of the TCGA BLCA data were used for the analysis. Mann Whitney test was used for 

the differential gene expression test.

Human bladder cancer cell lines including SW-780, UM-UC3, T24, as well as the patient-

derived xenograft lines RP-B-01 (B01) and RP-B-02 (B02) all express robust levels of 

APE1/Ref-1 protein (Figure 1G). High levels of APE1/Ref-1 in patient samples as well as 

patient-derived cell lines support the investigation of APE1/Ref-1 as a novel target in 

bladder cancer. Furthermore, the RP-B-01 have been characterized as more cisplatin-

resistant than the RP-B-02 cells (37) which we confirmed in vitro in Figure 7. RP-B-01 are 

at least 3-fold more resistant to cisplatin than RP-B-02 cells, providing us with 

representative BCa cell lines to study APE1/Ref-1 signaling and response to inhibition.

Bladder cancer cell proliferation is inhibited and apoptosis is induced by potent, selective 
redox inhibitors of APE1/Ref-1.

We used a panel of bladder cancer cell lines including SW780, T24, UC3, and noncancerous 

HUC cells to investigate the effects of parent compound APX3330 and more potent analogs, 

APX2009 and APX2014 on bladder cancer cell proliferation and apoptosis. Data in Figure 

2A clearly demonstrates that the inhibition of APE1/Ref-1 redox activity potently and 
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significantly reduces bladder cancer cell number in vitro. Analogs, APX2009 and APX2014 

were significantly more potent in all cell lines tested (p<0.0001) compared to APX3330. The 

IC50 values for APX2009 and APX2014 were 7-11-fold lower than the IC50s for APX3330. 

Notably, the noncancerous HUC cell line exhibited substantially less response to APE1/

Ref-1 redox-selective inhibitors (Figure 2A). To characterize further this effect, we 

determined if this reduced cell number is due to decreases in proliferation, increases in 

apoptosis, or both. BrdU incorporation assay demonstrated that the number of BrdU-positive 

cells was reduced from 11.2 ± 0.84% to 7.8% ± 0.64 after treatment with IC50 concentration 

of APX3330, to 6.9% ± 0.58 by the IC50 concentration of APX2009, and to 7.2% ± 0.49 by 

the IC50 concentration of APX2014 (all p<0.05 by ANOVA; n=4). Along with the observed 

decrease in proliferation, an increase in apoptosis was seen in both UC3 and T24 cells 

(Figure 2B). To assay for caspase-3/7 mediated apoptosis, we monitored the increase in red 

fluorescence over time following the addition of APX2009 and APX2014. Representative 

images of the vehicle- and APX- treated cells at 48 hours are shown in Supplementary 

Figure 3, while the time lapse video of the cells during treatment is in Supplementary Videos 

1-4. A dose-dependent increase in caspase activation was also accompanied by an increase 

in PARP-1 cleavage (Supplemental Figure 3B).

Blockade of APE1/Ref-1 inhibits PDX bladder cancer cell growth in monolayer and in 3D 
culture model.

APE1/Ref-1 redox inhibition was also characterized in two additional bladder cancer cell 

lines that were derived from a patient-derived xenograft (PDX) model (37). Patient-derived 

cells demonstrated similar sensitivity to APE1/Ref-1 redox inhibition as established bladder 

cancer cell lines and were similarly more sensitive to analogs, APX2009 and 2014 (Figure 

3A,B). In order to mimic tumor growth more accurately in a relevant microenvironment and 

in a more robust model for predicting response to treatment, we utilized a three-dimensional 

(3D) culture model of patient-derived RP-B-01 and RP-B-02 bladder cancer cells. Both RP-

B-01 and RP-B-02 cell lines are transitional cell carcinoma staged as T4bN1Mx and 

T2bN0Mx Grade III tumors, respectively (37). Using this 3D culture model, we observed a 

dose-dependent decrease in spheroid growth with all three APE1/Ref-1 inhibitors with a 

similar increase in potency for the new analogs, APX2009 and APX2014 as seen in 

monolayer (Figure 3 C,D). One difference that was observed with the 3D culture compared 

to monolayer was that the RP-B-01 cells were significantly more sensitive to APX2014 than 

APX2009 (Figure 3C,E, p<0.01). APX2009 and APX2014 were more potent in the RP-B-02 

cells than parent compound APX3330 (p<0.05), but were not significantly different from 

each other (Figure 3D, F). Both PDX cell lines exhibited similar expression patterns of both 

APE1/Ref-1 and its target STAT3 in 3D and in monolayer conditions, with no significant 

changes in these two critical proteins between either culturing conditions (Supplementary 

Figure 4).

Blockade of APE1/Ref-1 via siRNA similarly reduces the ability of the bladder cancer cells 
to proliferate.

To confirm the effects of APE1/Ref-1 inhibition on bladder cancer cell proliferation, we 

transfected bladder cancer cells with APE1/Ref-1 siRNA and quantified the proliferative 

capacity following APE1/Ref-1 knockdown. Using two siRNAs that are specific to APE1/
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Ref-1, we effectively reduced the levels of APE1/Ref-1 protein to greater than 70% over a 6-

day period (Figure 4). T24, UC3, RP-B-01 and RP-B-02 cell lines were transfected with 

APE1/Ref-1 siRNAs, and growth of cells with reduced APE1/Ref-1 levels was compared to 

the Scrambled siRNA-transfected cells over time. The xCELLigence system was used to 

monitor cell attachment, proliferation, and morphology in real time. Bladder cancer cells 

transfected with APE1/Ref-1 siRNA grew at a significantly slower rate compared to those 

transfected with the Scrambled control siRNA (Figure 4 A-D, p<0.05 compared to 

Scrambled control, at t=100 h). Western blotting was performed Day 3 and Day 6 post 

transfection, and APE1/Ref-1 levels were found to be decreased compared to scrambled 

control at all timepoints tested.

Redox-specific APE1/Ref-1 inhibition with APX2009 and APX2014 reduced the 
transcriptional activity of NFκB and STAT3 promoters as well as downstream expression of 
NFκB- and STAT3- regulated genes.

The transcriptional activity of NFκB, STAT3, and AP-1 is under redox control by APE1/

Ref-1 (24). Therefore, we quantified NFκB, STAT3, or AP-1 transcriptional activity 

following treatment with APE1/Ref-1 redox inhibitors (Figure 5A-C). In T24 and UC3 cells 

induced with the NFκB activator TNFα, APX2009 significantly reduced NFκB-driven 

luciferase activity 2-fold (*-p<0.05 APX treated vs vehicle, n=4). Similarly STAT3 activity 

was significantly blocked in T24 and UC3 cells following induction with STAT3 activator 

IL-6, and treatment with APX2009 (Figure 5B, *-p<0.05 APX treated vs vehicle, n=4). No 

effect on the transcription factor AP-1 was observed in these cell lines at the timepoints 

tested (Figure 5C). These data show that following inhibition of APE1/Ref-1, the expected 

decrease in NFκB and STAT3 activity is observed.

For further confirmation of a decrease in NFκB and STAT3 transcriptional activity, levels of 

survivin and Cyclin D1 were examined. Both survivin and Cyclin D1 are known to be 

downstream targets of NFκB and STAT3. Following treatment with APX2009 and 

APX2014, the expression of two proteins, survivin and Cyclin D1, were significantly down-

regulated, as shown in Figure 5D. We did not observe a change in expression from other cell 

proliferation or cell survival proteins including c-Myc, Bcl-2, or Bcl-XL (Figure 5E). We 

also analyzed co-expression of APE1/Ref-1 and survivin in superficial (n=12, Figure 5F) 

and invasive human bladder tumors (n=12, Figure 5G), and found a nearly universal overlap 

of positivity in both, as over 99% of cells positive for APE1/Ref-1 also demonstrated high 

levels of survivin. However, unlike APE1/Ref-1, survivin expression was primarily nuclear 

in both urothelial confined and invasive lesions. This result held true in dual fluorescence 

staining of the cisplatin-resistant TMA specimens (Figure 5H).

In vivo blockade of APE1/Ref-1 redox signaling decreases tumor growth and proliferation 
with a corresponding decrease in the protein levels of NFκB/STAT3 target, survivin.

Thus far, we have demonstrated that APE1/Ref-1 is highly expressed in human bladder 

cancer as well as PDX and established cell lines and that blockade of this critical redox 

protein inhibits bladder cancer cell growth and reduces cell survival proteins such as survivin 

and Cyclin D1 in vitro. Figure 6 demonstrates in vivo efficacy following inhibition of APE1/

Ref-1 redox activity in subcutaneous T24 tumor growth (Figure 6A), as mice treated 
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throughout the growth period exhibited reduced graft tumor growth compared to vehicle-

treated controls. At sacrifice, vehicle-treated animals bore tumors of 1.0 ± 0.2 g on average, 

while tumors from animals treated with APX3330 were 0.43 ± 0.10 g, and APX2009-treated 

tumors averaged 0.37 ± 0.14 g (both p<0.05 compared to vehicle control). Due to the 

observed increase in potency of APX2009, we were able to achieve similar tumor growth 

reduction to parent compound APX3330 at half the dose (APX3330 50mg/kg and APX2009 

25 mg/kg, twice daily as previously reported (21).) Prior to sacrifice, mice were injected 

with BrdU and BrdU incorporation was visualized and quantitated via red fluorescence. 

There is a dramatic 60% decrease in BrdU+ cells following treatment with APX2009 

(Figure 6B, C; *p<0.05) confirming that inhibition of APE1/Ref-1 redox activity similarly 

reduces bladder cancer cell proliferation in vivo. Mechanistically, we proposed that the 

regulation of the transcriptional activity of NFκB and STAT3 by APE1/Ref-1 played a role 

in the observed tumor efficacy. In support of this, decreased expression of survival protein, 

survivin was observed in vitro as well as in vivo and could at least partially explain the 

decrease in tumor cell survival. Immunoblotting for survivin protein in tumor tissues 

following in vivo treatment with APE1/Ref-1 inhibitors also demonstrated a significant 

reduction in survivin levels when compared to control tumors (Figure 6D, p=0.016). 

Harvested tumors demonstrated a 42% reduction in survivin expression by APX3330 and a 

64% reduction by APX2009, p<0.05, each inhibitor compared to vehicle. In addition, 

harvested tumors from mice treated with APX3330 and APX2009 demonstrated a increase 

in the ratio of cleaved caspase 3 (Cl-CASP3) to total caspase 3 by immunoblotting, (p<0.05, 

each inhibitor compared to vehicle).

APE1/Ref-1 inhibition enhances cisplatin’s therapeutic effect.

Cisplatin is the standard of care for bladder cancer, but many patients’ tumors are refractory 

to this therapy. Therefore, we evaluated whether the combined treatment of cisplatin and 

APE1/Ref-1 inhibitors was more effective at reducing bladder cancer cell proliferation. To 

determine this, we treated PDX lines, RP-B-01 and RP-B-02 as well as established cell line, 

T24 with increasing concentrations of cisplatin in combination with APX compounds 

(Figure 7). Cell proliferation was assessed using Alamar blue 72 h after drug treatment. 

First, preferential sensitivity of RP-B-02 cells was confirmed in our laboratory by 

demonstrating that the RP-B-02 cells exhibit an IC50 to cisplatin of 0.5 μM while the RP-

B-01 cells exhibited an IC50 to cisplatin of 1.44 μM (n=3; p<0.05). At the doses used in 

combination treatment, minimal reduction in bladder cancer cell proliferation was observed 

with APX2014 and APX2009 alone in all cell lines (~10-30%). However, when combined 

with increasing concentrations of cisplatin we observed a further reduction in cellular 

proliferation with combination treatment. Interestingly, the effects of APE1/Ref-1 on 

cisplatin-induced cytotoxicity was more prevalent in the PDX lines (Figure 7A, B) than the 

T24 cells (Figure 7C). Using the Chou-Talalay method, we determined that APX2009 and 

APX2014 have primarily an additive effect when combined with cisplatin. Combination 

index (CI) values were calculated with Compusyn for combination of APX inhibitors and 

cisplatin, and CI values ranged from 0.82 – 1.2. indicative of synergy to additivity with this 

combination. Importantly, the combination of cisplatin with APE1/Ref-1 inhibition is 

potently killing more cells than either agent alone.
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DISCUSSION

Bladder cancer is one of the leading causes of cancer-related deaths in men in the United 

States. The current chemotherapeutic standard-of-care is cisplatin-combination therapy. 

However, the majority of patients are refractory to cisplatin treatment (1, 3, 41, 42). Our 

results indicate that APE1/Ref-1 is highly expressed in patient samples of bladder cancer, 

with much lower staining in benign epithelium. These data corroborate previous studies 

indicating an increase of APE1/Ref-1 in the urine and serum of patients with bladder cancer 

(9, 13), and support the rationale for targeting APE1/Ref-1 in bladder cancer. In addition, we 

observe strong nuclear staining of APE1/Ref-1 in epithelial-confined tumors, while invasive 

lesions within the detrusor exhibit nuclear and increased cytosolic staining of this protein. 

This was observed previously in prostate and ovarian tumors (12, 14, 15), and this suggested 

to us that APE1/Ref-1 might have enhanced its redox activity in these tumors, as its redox 

targets are both cytosolic and nuclear while its repair activity predominantly occurs in the 

nucleus. Because of this, we investigated redox activity inhibitors and their activity in 

models of bladder cancer cell growth.

APX3330, APX2009, and APX2014 are known to inhibit APE1/Ref-1 redox signaling by 

binding to the redox active region (16, 18, 20, 22-24). APE1/Ref-1 adopts locally unfolded 

conformations near the critical cysteine residues responsible for redox activity. APX3330 

can then bind to the protein, facilitate disulfide bond formation and block the redox active 

cysteine 65 responsible for redox activity (23). In this study, we show that bladder cancer 

cell proliferation can be attenuated through the inhibition of redox signaling by APE1/Ref-1 

with APX compounds. We also establish the downregulation of transcriptional activity of 

key transcription factors, STAT3 and NFkB and downstream targets of these TFs (cyclin D1 

and survivin) following treatment with APE1/Ref-1 inhibitors. These pathways have been 

shown to be key players in proliferation and chemoresistance in BCa as well as other cancer 

types. Consistent with that, we demonstrate that cisplatin-resistant human PDX cells are 

sensitive to APE1/Ref-1 redox-selective inhibition, and we demonstrate that inhibition of 

APE1/Ref-1 redox activity sensitizes bladder cancer cell lines to cisplatin. Future in vivo 
studies assessing the efficacy APE1/Ref-1 inhibitors in treating cisplatin-resistant tumors in 

combination with cisplatin are warranted.

APE1/Ref-1 was originally discovered as an AP endonuclease that functions in base 

excision repair and is conserved from E. coli to humans (5). APE1/Ref-1 is responsible for 

repairing oxidative and alkylated DNA damage by nicking the DNA backbone at the AP site 

with further processing by β-polymerase and DNA ligase (6). It was later discovered that 

APE1/Ref-1 plays a role in redox signaling by perturbing DNA binding capabilities of key 

TFs such as NFκB and STAT3. These transcriptional activators are known to play an 

important part in the regulation of proliferation in many cancers (24, 25, 31, 40, 43). Here 

we show that the transcriptional activity of NFκB and STAT3, but not AP-1 are both 

attenuated in the presence of novel redox-selective APE1/Ref-1 inhibitors in established 

bladder cancer cell lines.

We assessed the expression of several known downstream targets of TFs whose DNA 

binding activity are under redox control by APE1/Ref-1 including Cyclin D1, c-Myc, Bcl-2, 
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Bcl-XL, Mcl-1, and survivin. Importantly, many of these critical proteins have binding sites 

for STAT3 and NFκB in their promoters indicating that the targeting of APE1/Ref-1 and 

thereby blockade of STAT3 and NFκB impacts upon the expression of survival and 

proliferation proteins in bladder cancer cells. Redox-selective APE1/Ref-1 blockade showed 

a significant reduction in cyclin D1 expression (2-fold, p<0.05), as well as a substantial 

reduction in survivin levels (3-4-fold, p<0.01). Interestingly, we did not observe a universal 

decrease in the NFκB/STAT3 targets we investigated, nor a reduction in AP-1 activity at the 

timepoints tested. This suggests that redox signaling through the APE1/Ref-1 axis is a 

specific transcription factor-dependent, as well as a gene and cancer type-specific event. The 

caveats to these conclusions remain that it is possible the timing of the reduction in 

expression is different between each of these proteins or we are seeing induction of a 

potential feedback loop. Both of these options are being explored in future studies. We also 

observe a potential effect on the vascularization of the bladder grafts (Figure 6A). APE1/

Ref-1 regulation of STAT3 and HIF1-α potentially may decrease the levels of VEGF leading 

to an effect on angiogenesis. APE1/Ref-1 role in angiogenesis has been confirmed in a 

multitude of other studies (16, 17, 19, 20) and will be investigated in vivo in the future.

Survivin is a bifunctional protein that has been shown to have both anti-apoptotic and pro-

proliferative effects in bladder cancer cells (28-31, 44-47). Because survivin is known to be 

regulated by both NFκB and STAT3 and is regulated by APE1/Ref-1 in prostate cancer (21, 

28, 45) we included this protein target as a marker of APE/Ref-1 inhibition in our studies in 

bladder cancer and as a mechanistic explanation for the decrease in cell growth. We found a 

near universal co-expression of APE1/Ref-1 and high survivin levels in human bladder 

cancer specimens. Importantly, we found that survivin is the most reduced of all the known 

target proteins of APE1/Ref-1-regulated transcription factor activity, a reduction in protein 

levels of more than 50%, both in vitro and in vivo (Figure 5D & 6D). Survivin is a member 

of the XIAP family of apoptosis inhibitors and is a known inhibitor of caspase 3 function, 

supporting cell survival (45). It is especially active in cancer tissues. However, survivin also 

has pro-cell proliferation functions in cancer, as it is known to interact with microtubules 

and chromatin, promoting cell proliferation (45). In addition, survivin is known to be 

induced during bladder cancer (28, 29, 44, 48), and recently both survivin and APE1/Ref-1 

have been implicated as functional biomarkers for the disease. Our data support future 

mechanistic analysis of APE1/Ref-1 activity that is centered on survivin and supports 

investigation of the APE1/Ref-1 axis that is driving survivin expression as a target in bladder 

cancer cell survival and proliferation.

Thus far, targeting survivin in cancer has proved difficult. For example, survivin inhibitor 

YM-155 affects the expression of additional proteins through a mechanism involving Sp1 

which contributes to off-target effects (49). In spite of this, inhibition of survivin is a viable 

approach to killing bladder cancer cells as knockdown of survivin or a reduction in survivin 

protein levels in bladder cancer cells results in a decrease in cell proliferation and increase in 

apoptosis. Inhibition of survivin with small molecule inhibitors also causes bladder cancer 

cells to enter cell arrest or apoptosis (28, 31, 45), again pointing to its importance in bladder 

cancer cell survival. Yet, how it functions and how it is regulated in bladder cancer is 

unknown. Our data presented here clearly demonstrate that inhibition of APE1/Ref-1 redox 

signaling activity dramatically reduces survivin expression in both in vitro and in vivo 
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models of bladder cancer and circumvents the need for a direct survivin inhibitor. Survivin 

as a key mediator of bladder cancer cell response following perturbation of the APE1/Ref-1 

signaling axis is a novel finding with important clinical implications.

Preclinical studies demonstrating the validity of APE1/Ref-1 redox function as a drug target 

in cancer led to a phase I clinical trial assessing the safety of APX3330 and recommended 

phase II dose for future treatment of solid tumors () (26, 27). With the advancement of 

APX3330 to the clinic, we are also focusing on the development of more potent second-

generation compounds such as APX2009 and APX2014. Our work here extends APE1/

Ref-1 targeting into bladder cancer and is the first demonstration of APE1 as a potential 

bladder cancer target. Our ultimate goal is to provide a therapeutic option in bladder tumors 

that are inherently resistant to cisplatin. Many bladder cancer patients will recur post initial 

treatment, and up to 20% of them will be administered cisplatin-based chemotherapy (3), 

Our work therefore provides justification to move forward with a clinical evaluation of 

redox-specific inhibition of APE1/Ref-1 in bladder cancer patients, as it may provide a 

potential option for treating cisplatin-refractory bladder cancer patients.

Our data demonstrate a critical role for APE1/Ref-1 redox activity in bladder cancer cells 

and confirm its use as a putative urinary bladder cancer tumor marker. In addition, our work 

shows, for the first time, the feasibility of targeting APE1/Ref-1 therapeutically for the 

treatment of bladder cancer and for combination therapy with standard-of-care drug, 

cisplatin. This is supported by the additive effect that APE1/Ref-1 inhibition exhibits on 

bladder cancer growth and cell death in combination with cisplatin. Our work also 

demonstrates a mechanistic target for APE1/Ref-1 redox function in bladder cancer: the 

induction of the critical cell regulator, survivin. Our work supports the use of novel redox-

selective inhibitors in clinical studies for patients with bladder cancer.
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SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder 

cancer growth, and provides compelling preclinical data using selective redox activity 

inhibitors of APE1/Ref-1 in vitro and in vivo.
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Figure 1. APE1/Ref-1 is expressed in bladder cancer tissue as well as bladder cancer cell lines 
including patient-derived xenograft lines, RP-B-01 and RP-B-02.
APE1/Ref-1 (red) is expressed at a low level in benign bladder urothelium (A), but is highly 

expressed in urothelial carcinoma (B,C) as determined by IF. Expression is primarily nuclear 

in non-invasive tumors (B), but exhibits both nuclear and cytosolic pattern in invasive lesions 

(C). Immunohistochemistry on cisplatin-refractory patient samples also demonstrated 

nuclear localization of APE1/Ref-1 in urothelial-confined tumor (D) and a shift to both 

cytosolic and nuclear expression in invasive tumor (E). (F), Samples within The Cancer 

Genome Atlas (TCGA) show that expression of APE1/Ref-1 mRNA (APEX1) is 

significantly upregulated in bladder cancer patients compared to matched control 

(p=1.68e-05, Mann Whitney test). Bladder cancer cell lines SW-780, UC3, T24, RT-4, 

Scaber, as well as the PDX lines B01 and B02 all expressed robust levels of APE1/Ref-1 in 

comparison to HUC (human urothelial cells), justifying their use for inhibitor study. (G *- 

p<0.05, ANOVA). Established bladder cancer lines exhibit significantly higher expression 

than the benign HUC cell line.
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Figure 2. Treatment with APE1/Ref-1 inhibitors potently blocks bladder cancer cell proliferation 
and activated Caspase 3/7.
SW780, T24, UC3, and HUC cell lines (A) were treated with increasing concentrations of 

redox-specific inhibitor APX3330 (RED square), as well as the more potent analogs 

APX2009 (GREEN circle) and APX2014 (orange triangle). The IC50 values for A were 

determined using the methylene blue assay, n=4. IC50 values were calculated and compared 

between the drugs, and are listed next to their curves in the figure; * denotes p<0.05 

APX3330 IC50 versus both APX analogs. (B) T24 and UC3 cells were treated with 

APX2009 and APX2014 at the IC50 and IC90 and monitored over time for activation of 

capsase 3/7 by an increase in red fluorescence. Time course graphs at 48 hr are shown. The 

curves are all significantly different from DMSO (p<0.05).
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Figure 3. Inhibition of APE1/Ref-1 in monolayer and in three-dimensional (3D) culture using 
PDX-derived cells RP-B-01 and RP-B-02 blocks tumor growth.
RP-B-01 and RP-B-02 cells were grown first in monolayer cell culture (A, B, n=3), and then 

in 3D culture (C-F) and treated with APX3330, APX2009 and APX2014 over the course of 

15 days (n=3-4±SE). Monolayer and spheroid growth was measured via Alamar blue and 

normalized to the fluorescence of media control. Representative images of spheroids treated 

with APX inhibitors are shown in E and F. The IC50 values were determined (n=3,4 ± SE) 

and compared between the drugs using ANOVA with Tukey post hoc test: * p<0.05, 

**p<0.001 comparison of IC50 of APX3330 versus APX analog; while # denotes p<0.01 

APX2009 vs APX2014.
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Figure 4. Reducing APE1/Ref-1 levels via siRNA dramatically slows down the proliferation of 
bladder cancer cells.
T24 (A), UC3 (B), RP-B-01 (C) and RP-B-02 (D) were transfected with two distinct 

sequences of APE1/Ref-1 siRNA (50 nM) and growth was compared to Scrambled control 

(n = 3, *p < 0.05 (Scr vs siAPE/Ref-1 #1), # p < 0.05 (Scr vs siAPE/Ref-1 #2) at 100 h). 

Cell index was monitored via xCELLigence system in A-C and fluorescence using Alamar 

blue assay was monitored over time in D. Western analysis confirmed the reduction in 

APE1/Ref-1 protein levels and GAPDH was used as a loading control.
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Figure 5. Redox-specific APE1/Ref-1 inhibition with APX2009 and APX2014 reduced the 
transcriptional activity of NFκB and STAT3 resulting in a decrease in expression of Survivin and 
Cyclin D1
NFκB-driven luciferase (A), STAT3-driven luciferase (B), and AP-1-driven luciferase (C) 
were quantified and normalized to Renilla in cytokine-induced T24 and UC3 cells following 

treatment with the corresponding cell growth-inhibitory IC50 concentrations. T24 cells were 

treated with APX2009 (8.5 μM) and APX2014 (6.5 μM), and UC3 cells were treated with 

APX2009 (6.1 μM) and APX2014 (4.6 μM) for 24 h. (*-p<0.05 APX treated vs vehicle, 

n=4). APX2009 and APX2014 treatment also decreased expression of two verified NFκB 

and STAT3 targets, survivin and Cyclin D1 (D), as indicated by densitometry quantified 

immunoblots (right panel, *-p<0.05 APX treated vs vehicle, n=4). In panels F and G, we 

analyzed co-expression of survivin and APE1/Ref-1 in superficial (F) and invasive human 

bladder tumors (G) in patients, and found nearly universal overlap of positivity per cell in 

both in human samples, though cellular localization of APE1/Ref-1 was cytoplasmic in 

invasive lesions. This was also true in cisplatin-refractory patients from our tissue 

microarray specimens (H).
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Figure 6. Treatment with APX3330 and APX2009 exhibited significantly reduced tumor growth 
and proliferation in vivo compared to vehicle control.
Tumor growth delay following treatment with APX compounds in T24 flank xenografts with 

images of representative size of tumors shown in A. Mice were treated with APX3330 (50 

mg/kg, ip) and APX2009 (25mg/kg, ip) twice daily for the duration of the experiment. 

Tumor growth was normalized to the tumor volume on Day 1, when treatment was started 

(A, *p<0.05, n=8 animals per group). Proliferation following treatment as determined by 

BrdU labeling and IF is pictured in B, with quantification shown in C (n=8; p<0.05). 

Harvested tumors also showed a reduction in survivin expression by both APX3330 (42%) 

and APX2009 (64%) with densitometry ratios to GAPDH shown in the blots, and a 

reduction in the ratio of cleaved caspase 3 to total caspase 3, as demonstated by the 

densitometry data included in the blots as the ratio of cleaved to total caspase 3 (D, n=8, 

p=0.03). Representative immunoblots shown, and the average densitometry of 8 tumors is 

inset.
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Figure 7. Combination treatment with cisplatin and APX inhibitors resulted in an enhancement 
of cisplatin-induced cytotoxicity.
RP-B-01 (A), RP-B-02 (B), and T24 (C) cell lines were treated with increasing 

concentrations of cisplatin in combination with a single dose of either APX2009 or 

APX2014 as indicated (n=3±SE). Cell proliferation was normalized to saline control and 

expressed as Fold Change. Combination index (CI) values calculated with Compusyn for 

combination of APX inhibitors and cisplatin. CI values indicated mainly additivity (0.95 – 

1.2) to synergy (0.8 – 0.94).
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