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A B S T R A C T

This paper proposes the fractional-order modeling for sliding mode control of a complex four-dimensional en-
ergy-saving and emission-reduction system (ESERS). In the proposed methodology, the fractional calculus
techniques are employed to accurately model the dynamics of the ESERS, and the fractional-order model of the
energy-saving and emission-reduction system (FOESERS) is formulated. With the proposed FOESERS, all of the
equilibrium points and the corresponding eigenvalues are obtained, and the instability region and the state
trajectories of FOESERS are also given. The FOESERS can represent complex dynamic behaviours with chaotic
and unstable states on the energy conservation, carbon emissions, economic growth, and renewable energy
development, and have a great impact on the formulation of government energy policies. Furthermore, based on
the fractional Lyapunov stability and robust control theory, a sliding-mode controller is designed to control the
FOESERS with model uncertainties and external disturbances to the equilibrium point in the finite time. Finally,
simulation results confirm the effectiveness and robustness of the proposed scheme.

1. Introduction

Energy is important for the global economic development and social
progress [1]. Economic growth can promote the structural reformation
of energy resource exploitation and utilization, and thus further im-
provements on energy efficiency and energy intensity are expected [2].
However, the rapid economic growth may lead to an increasing energy
demand of fossil fuels, and the excessive use of fossil fuel derivatives
will result in greenhouse gas emissions (GHG) and environmental pol-
lution issues, especially in developing countries [3–7]. According to the
annual time-series data of energy consumption, Gross Domestic Product
(GDP) and renewable energy development during 2006–2016 from
China National Statistics Yearbook [8,9], the annual GDP of China in-
creased from 3288.3 billion US dollars in 2006 to 11154.4 billion US
dollars in 2016, while the total energy consumption grew from
2447.6 million tons coal equivalent (MTCE) in 2006 to about 4360
MTCE in 2016. Also, the overall installed capacity of renewable energy
sources in China accounted for 139.9 GW in 2006 and reached about
600 GW in 2016, while the annual carbon emissions totaled 7.2 billion

metric tons in 2006 and reached 10.6 billion metric tons in 2016 [9].
With the surge of fossil fuel prices and increasing environment concerns
over the years, great pressure to curb the emissions and energy intensity
have forced China to implement various energy-saving and emission-
reduction measures in order to establish an energy-efficient and en-
vironmentally-friendly society for sustainable development [10,11].

The causal relationship exists among energy consumption, CO2

emissions, and economic growth. Lots of work has been done to de-
monstrate the impacts of carbon emissions and economic growth on
energy consumption [2,5,6,12–16]. Besides, different mathematical
models of energy-saving and emission-reduction system (ESERS) have
been developed in [17–20] to simulate the nonlinear coupling dynamics
of energy conservation, economic growth, carbon emissions, and re-
newable energy development in the evolutionary process. The ESERS
models can indicate various sophisticated issues, such as energy-saving
and emission-reduction, economic growth, carbon emissions, carbon
tax, energy intensity, energy efficiency and so on, in a regional energy
system [14,20]. By analyzing the reciprocal causation of these factors,
the improvements on energy efficiency, energy intensity and

https://doi.org/10.1016/j.ijepes.2018.02.045
Received 5 November 2017; Received in revised form 5 January 2018; Accepted 25 February 2018

⁎ Corresponding author at: Hunan Key Laboratory of Intelligent Information Analysis and Integrated Optimization for Energy Internet, Hunan University, Changsha 410082, China.
E-mail address: binzhou@hnu.edu.cn (B. Zhou).

Electrical Power and Energy Systems 100 (2018) 400–410

0142-0615/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2018.02.045
https://doi.org/10.1016/j.ijepes.2018.02.045
mailto:binzhou@hnu.edu.cn
https://doi.org/10.1016/j.ijepes.2018.02.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2018.02.045&domain=pdf


greenhouse gas emissions can be achieved to promote the energy
structure transformation and transition to a low-carbon economy
[12,13]. Most notably, Tian LX et al. proposed a three-dimensional
model of the ESERS in [17] considering the complicated relationship
between energy-saving and emission-reduction, economic growth and
carbon emissions. The quantitative coefficients of the proposed ESERS
model were identified based on artificial neural networks in [17], and
an empirical study with the statistical data from China confirmed the
perfect agreement of the model performance with real-world situations.
Furthermore, the renewable energy capacity is taken into account to
develop a new four-dimensional ESERS model in [18]. The ESERS is a
complex oscillatory system and exhibits highly nonlinear characteristics
with aperiodic, sudden, or random phenomena. Hence, the stabilization
of the ESERS is of a major strategic significance for ensuring economic
development, reducing energy security and maintaining environment
sustainability, and it is important to develop robust control methodol-
ogies for supporting the ESERS with uncertainties and external dis-
turbances.

Because of the high nonlinear complexity of the ESERS, the dy-
namic behaviours of ESERS have been investigated in [17,18] by the
equilibrium points and Lyapunov exponents. Various stability control
methods, including linear feedback control [18] and impulsive con-
trol [21], have been applied to suppress system chaos for stable
equilibrium. The previous modeling and control methods of ESERS in
[17–21] are based on the integer-order model. However, the state
variables of the ESERS have hereditary properties with long-memory
effects, and the evolutionary dynamics of the ESERS are often better
described by fractional derivatives due to its global correlation
characteristics [22,23]. Thus, the fractional calculus can extend the
integer-order calculus models to the non-integer order models [24],
and is proven to be a very suitable and flexible tool to characterize
the genetic memory properties in various chaotic evolutionary pro-
cesses [23–28]. So far, many practical nonlinear systems in electrical
energy fields [27–34], such as the energy supply-demand system
[27], hydro-turbine governing system [29], and wind turbine [31],
have been modelled using fractional differential equations. This
paper aims to investigate the modeling and control of the fractional-
order energy-saving and emission-reduction system (FOESERS) to
coordinate the dynamic performance of energy conservation, eco-
nomic growth, carbon emissions, and renewable energy develop-
ment.

In this paper, the fractional integrals and derivatives are used to
present the complex dynamics of ESERS, and the FOESERS model can
be formulated based on fractional order calculus. The fractional dif-
ferential equations of the ESERS are thoroughly investigated to solve
the equilibrium points and their corresponding eigenvalues, and the
instability region and the state trajectories of the FOESERS are also
given. Numerical simulations on the dynamic behaviours of FOESERS
indicate the nonlinear chaotic and unstable phenomena on energy
conservation, economic growth, carbon emissions, and renewable
energy development. Hence, based on the fractional Lyapunov stabi-
lity theory and sliding mode control theory, a robust control method is
designed to stabilize the FOESERS with model uncertainties and ex-
ternal disturbances to the equilibrium point in a finite time.
Comparative results on a practical system with different fractional
orders as well as different uncertainty and external disturbances
confirm the effectiveness and robustness of the proposed control
scheme.

The rest of this paper is organized as follows: The mathematical
modeling of a FOESERS with its dynamic behaviours is formulated and
investigated in Section 2. In order to enhance the stability of FOESERS,
a robust fractional-order finite-time controller based on sliding mode
control theory is designed in Section 3. Three illustrative examples are
provided in Section 4. Finally, Section 5 concludes this paper.

2. Fractional-order modeling of ESERS

2.1. Integer-order model of ESERS

The dynamic evolution model of ESERS can be formulated as the
following mathematical form [18],
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where x1 is the variable of energy saving, typically expressed in MTCE;
x2 is a variable of carbon emissions, typically expressed in ton; x3 is a
variable of economic growth GDP, typically expressed in US dollar; x4 is
a variable of renewable energy development in a given period, typically
expressed in GW. αi, βi, γj, δj, M, N, C, E are positive constants (i=1, 2,
3, j=1, 2, 3, 4), and the units of M, N, C, E can be converted to tons of
standard coal). α1 is the development factor of x1; α2 is the impact factor
of x2 to x1; α3 is the impact factor of x3 to x1; N is the inflexion (local
maximum point) of x2 to x1; β1 is the impact factor of x1 to x2; β2 is the
development factor of x2; β3 is the impact factor of x3 to x2; K is the
crest value of x2 in a given period; L is the crest value of x3 in a given
period; δ4 is the impact factor of x4 to x2; γ1 is the impact factor of x1 to
x3; γ2 is the impact factor of x2 to x3; γ3 is the impact factor to itself;M is
the inflexion of x1 to x3; γ4 is the impact factor of x4 to x3, and E is the
inflexion of x4 to x3; δ1 is the impact factor of x2 to x4; δ2 is the impact
factor of x3 to x4; C is the inflexion of x3 to x4, and δ3 is the impact
factor to itself [18].

Based on the normalization of the ESERS from the statistical data in
China [8,9], the impact factors of the system can be obtained by the
parameter identification using artificial neural network in [17,18].
Hence, the model parameters are set as follows: α1= 0.09,
β1= 0.0412, γ1= 0.035, δ1= 0.01, α2= 0.003, β2= 0.08,
γ2= 0.0062, δ2= 0.02, α3= 0.012, β3= 0.8, γ3= 0.08, δ3= 0.06,
γ4= 0.02, δ4= 0.03, M=3.5, E=2, C=2, K=1.6, N=0.9,
L=2.8.

2.2. Fractional-order model of ESERS

In this subsection, the definitions of fractional-order derivatives and
the lemmas on fractional order system are provided. Then, following
the integer-order model of the ESERS in Eq. (1), the fractional-order
model of the ESERS can be formulated based on the fractional-order
differential equations.

Definition 1 ([26]). The definition of Caputo fractional-order
derivative is described by,
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where q is the fractional order of the system, and Γ(·) which is defined
as ∫= ∞ − −τ t e dtΓ( ) τ t

0
1 is the gamma function.

Definition 2 ([24]). The definition of Riemann-Liouville fractional-
order derivative is described by,

∫=
−

− − < <− −D x t
n q

d
dt

t τ x τ dτ n q n( ) 1
Γ( )

( ) ( ) 1RL t t
q

n

n t

t n q
,

1
0

0 (3)

Definition 3 ([24]). The Laplace transform of the Caputo fractional-
order derivative is described by,
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where X(s) is the Laplace transform of x(t).

Definition 4 ([24]). The Laplace transform of Riemann-Liouville
fractional-order derivative is described by,
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Lemma 1 ([27]). Considering the fractional commensurate order system
=D x f x( )qi , = = ⋯=q q qi1 2 , where < ⩽q0 1i , if all eigenvalues which are

evaluated at the equilibrium points of the Jacobian matrix = ∂ ∂J f x/ satisfy
>λ q|arg( )| π/2i , the system is asymptotic stability.

Lemma 2 ([33]). Considering the fractional incommensurate order system
=D x f x( )qi , ≠ ≠ ⋯ ≠q q qn1 2 , where all qi are the orders of the

fractional incommensurate order system between 0 and 1, the equilibrium
point x= x∗ for the system is asymptotically stable if,

>λ π H|arg( )| /(2 )i (6)

where λi are the roots of the following equation,

⋯ − =∗λ λ λ Jdet(diag([ ]) ) 0Hq Hq Hqn1 2 (7)

where =∗ ∂
∂ ∗J xf

x ; f=[f1, f2⋯, fn]T; =q ν μ/i i i; H is the least common
multiple of the denominators μi of qi; The greatest common divisor of μi and
νi is 1, i.e. =μ ν( , ) 1i i ; ∈ +μ ν Z,i i , = ⋯i n1,2, , .

Property 1 ([35]). The following equality for the Caputo derivative and the
Riemann–Liouville derivative is hold:

=− −D D f x t D f x t( ( ( ))) ( ( ))RL C α RL C β RL C α β, , , (8)

From the Caputo definition and Riemann-Liouville definition in Eqs.
(2) and (3), it can be found that the Laplace transform of Riemann-
Liouville definition in Eq. (5) includes the fractional-order derivative
terms, while the Laplace transform of Caputo definition in Eq. (4)
contains integer-order derivative terms which formulate the fractional-
order differential equations with clear physical interpretations. More-
over, the Caputo fractional-order derivative has the widely spread ap-
plication in the actual modeling process [35]. Hence, the Caputo defi-
nition is considered in this paper to characterize the genetic memory
properties of energy saving, carbon emissions, GDP, and renewable
energy development. Here, Dq represents the Caputo derivative with
fractional order q. Inspired from [33] and the ESERS in Eq. (1), the
dynamic model of the FOESERS can be formulated as follows,
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In the first formula in Eq. (9), Dq
1x1 is the fractional-order form of

dx dt/1 . The first formula in Eq. (9) indicates the complex relationship
between the variables of carbon emissions and emission reduction
Dq

1x1, carbon emissions, energy conservation and economic growth in a
given period, and it demonstrates that the variation of energy saving
and emission reduction with time Dq

1x1 is connected to the amount of
energy saving x1 and the share of energy saving and emission reduction
potential −x N/ 12 simultaneously. As for −α x x N( / 1)1 1 2 , when <x N2 ,
i.e., − <x N/ 1 02 , the growth speed of x1 becomes slower; when >x N2 ,
the growth speed of x1 becomes faster. Dq

1x1 is proportional to eco-
nomic growth x3, but it is inversely proportional to carbon emissions x2.
Dq

1x1 will increase as the investment in x1 increase [17].

In the second formula in Eq. (9), Dq
2x2 is the fractional-order form

of dx dt/ .2 The second formula in Eq. (9) shows that the variation of
carbon emissions Dq

2x2 that changes with time is proportional to x1, and
the increment of x1 will slow down the change rate of Dq

2x2. The growth
trend of x2 is fast before the peak value K and slows down after the peak
value. The initial stage of development of x3 will result in substantial
carbon emissions, and its effects on x2 will trend to be moderate after
the peak value L. As for −β x x K(1 / )2 2 2 , when <x K2 , i.e., − >x K1 / 02 , the
growth speed of x2 will be fast; when >x K2 , the growth trend of x2

slows down. As for −β x x L(1 / )3 3 3 , when <x L3 , then − >x L1 / 03 , the
effects of x3 for x2 is positive; x3 will has negative effects on x2 will be
negative when x3 reaches the peak value L. Dq

2x2 is inversely propor-
tional to renewable energy development x4, and the addition of x4 will
offset the change rate of Dq

2x2.
In the third formula in Eq. (9), Dq

3 x3 is the fractional-order form of
dx dt/ .3 The third formula in Eq. (9) reveals that the early investment of
x1 will offset the growth of x3. With the improvement of the energy
saving and emission reduction technology for x1, x1 will further promote
the development of x3. As for −γ x x M( / 1)1 1 1 , when <x M1 , i.e.,

− <x M/ 1 01 , x1 has a negative effect on x3; when >x M1 , the effect of x1

on x3 is positive. The change of economic growth with time Dq
3 x3 is

inversely proportional to x2, and thus the addition of x2 will offset the
development of x3. Dq

3 x3 is inversely proportional to investment for
energy-saving and emission-reduction, and the investment will offset
the growth of x3 in a certain degree. The initial investment in x4 will
offset the development of x3. With the advancement of x4, x4 will boost
x3 in turn. As for −γ x x E( / 1)4 4 4 , when <x E4 , i.e., − <x E/ 1 04 , x4 has a
positive effect on x3; when >x E4 , the effect of x4 on x3 is positive.

In the fourth formula in Eq. (9), Dq
4 x4 is the fractional-order form of

dx dt/ .4 The fourth formula in Eq. (9) indicates that Dq
4 x4 is positively

proportional to carbon emissions x2, and this means that the increase of
carbon emissions will enhance the growth of Dq

4 x4. The low level of x3
will also offset the development of x4. With the growth of x3, x3 will
promote the value of x4. As for −δ x x C( / 1)2 3 3 , when <x C3 , i.e.,

− <x C/ 1 03 , the effect of x3 on x4 is negative. The change of renewable
energy development Dq

4 x4 with time-dependent is inversely propor-
tional to x4, and Dq

4 x4 will decrease as x4 increases [18].

2.3. Dynamic properties of FOESERS

In this subsection, the properties of the FOESERS model are dis-
cussed, including dissipation, equilibrium points and chaos.

2.3.1. Dissipation
On evaluating the dissipative nature of the FOESERS, it is found

from Eq. (10) that the volume element V0 goes on contracting ex-
ponentially into V0e(α1/M-2β

2
/C)y+(β

2
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when =α
N

β
K

21 2 , − − − <β α γ δ 02 1 3 3 , the FOESERS system is dissipative.

2.3.2. Equilibrium points
The Jacobian matrix can be obtained to study the nonlinear char-

acteristics of FOESERS [18], as follows,
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The dynamic characteristics of the FOESERS can be analyzed by the
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eigenvalues which are determined by the Jacobian matrix at the equi-
librium point. Set = = =d x dt d x dt d x dt/ 0, / 0, /q q q q q q

1 2 31 1 2 2 3 3

=d x dt0, / 0q q
44 4 , the equilibrium points of FOESERS are obtained. Based

on the equilibrium points, the eigenvalues of the Jacobian matrix of the
system in Eq. (9) are determined. The Equilibrium points and the cor-
responding eigenvalues are listed in Table 1.

2.3.3. Investigation of chaos
In this subsection, the chaos of the commensurate-order FOESERS

and incommensurate-order FOESERS are investigated.

(i) For the commensurate-order FOESERS (i.e. = = ⋯=q q qn1 2 ), the
instability region can be determined based on Lemma 1 by the fol-
lowing condition,

> = ⎧
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(12)

Therefore, the necessary condition of instability is >q 0.9158.
Chaotic vibrations in the commensurate-order FOESERS with

= =q q0.95 and 0.99, and the state trajectories in the commensurate-
order FOESERS with = =q q0.95 and 0.99 are shown in Figs. 1–4. It is
observed that the commensurate-order FOESERS with

= =q q0.95 and 0.99 can generate complex chaotic attractors and have

aperiodic, sudden, random, or oscillations. It can also be proved from
Figs. 1–4 that the instability region calculated in Eq. (12) turns out to be
accurate and correct.

(ii) For the incommensurate-order FOESERS (i.e. ≠ ≠ ⋯ ≠q q qn1 2 ),
the incommensurate order and the equilibrium point are set as

=q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 and =O (0,0,0,0), respectively.
Then, the Jacobian matrix can be obtained based on Eq. (11), as
follows,
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Due to the fractional form (q1, q2, q3, q4)= (23/25, 47/50, 24/25,
49/50), H is set to be 50 based on Lemma 2. J∗ and H=50 are taken
into Eq. (7) in Lemma 2, and Eq. (14) is obtained as,

+ − + + − +
+ − + − − ×
+ × + × + × =

−

− − −

λ λ λ λ λ λ λ
λ λ λ λ λ

λ λ

0.09 0.08 0.08 0.06 0.00844 0.00678
0.00396 0.0045 0.0044 0.000248 4.7916 10
3.708 10 4.212 10 1.3332 10 0

190 144 143 142 141 97 96

95 94 93 49 4 48

4 47 4 46 4 (14)

Then, the roots of Eq. (14) are taken into Eq. (6) and the following
can be obtained,

Table 1
Equilibrium points and eigenvalues.

Equilibrium points The corresponding eigenvalues

=E (0,0,0,0)1 = − = = − + = − −λ λ λ i λ i0.0103, 0.0380, 0.0899 0.0216 , 0.0899 0.02161 2 3 4

=E (1.3748,0.7691,1.6915,0.412)2 = − = − = − + = −λ λ λ i λ i0.1516, 0.0644, 0.0330 0.2482 , 0.0330 0.24821 2 3 4

=E (0.8733,0.8609,0.4999,0.0185)3 = = − = − + = − −λ λ λ i λ i0.0691, 0.0634, 0.0778 0.2044 , 0.0778 0.20441 2 3 4

= −E ( 1.5441,1.1453,3.4423,1.0183)4 = − = − = − + = −λ λ λ i λ i0.4812, 0.0613, 0.1963 0.2874 , 0.1963 0.28411 2 3 4

Fig. 1. Chaotic vibration in the commensurate-order FOESERS with =q 0.95.
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Fig. 2. Chaotic vibration in the commensurate-order FOESERS with =q 0.99.

Fig. 3. State trajectories in the commensurate-order FOESERS with =q 0.95.
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− = >π λ0.01 min{|arg( )|} 0.0033 0
i

i (15)

This implies that for derivative orders =q q q q( , , , )1 2 3 4
(0.92,0.94,0.96,0.98), the incommensurate-order FOESERS appears to be
aperiodic, sudden, random, or oscillations. Chaotic vibration and state
trajectories are shown in Figs. 5 and 6. From the above discussions, the
commensurate-order FOESERS and incommensurate-order FOESERS
have chaotic and nonlinear phenomena on energy conservation, carbon
emissions, economic growth, and renewable energy development.
Therefore, it is indispensable to study the stabilization of the chaotic
FOESERS.

3. Design of sliding mode control for FOESERS

In the practical applications, the dynamics of nonlinear systems
should be described using the model with uncertain terms and external
disturbances. Hence, the uncertain FOESERS with control inputs is
taken into account and the FOESERS with uncertain terms and external
disturbances can be formulated as follows,

= + + +D x t f x t f x t d t u t( ) ( , ) Δ ( , ) ( ) ( )q (16)

where ∈q (0,1] is the fractional order coefficient, = ⋯x x x x[ , , , ]n
T

1 2 re-
presents the state vector of the FOESERS, and

= ⋯ ∈f x t f x t f x t f x t R( , ) [ ( , ), ( , ), , ( , )]n
T n

1 2 denotes the nonlinear
function; = ⋯ ∈d t d t d t d t R( ) [ ( ), ( ), , ( )]n

T n
1 2 and =f x tΔ ( , )

⋯ ∈f x t f x t f x t[Δ ( , ),Δ ( , ), ,Δ ( , )]n
T

1 2 Rn represent the external disturbance
and unknown model with uncertain terms of the system, respectively.

= ⋯ ∈u t u t u t u t R( ) [ ( ), ( ), , ( )]n
T n

1 2 is the designed controller.
In this paper, a fractional-order sliding mode controller is designed

to stabilize the FOESERS based on the sliding mode control theory. The
sliding mode control is to design a controller to impel the system state
trajectories to the predetermined sliding mode surface, and the design
of sliding mode controller consists of two steps [23]. The first stage is to

form a sliding mode surface, meanwhile, the design of the sliding sur-
face is asymptotically stable. The second stage is to design a switch
control law to force the trajectories to achieve the sliding surface and
remain on it all the time.

The fractional-order sliding surface is given as follows [35],

= + +− −s t D x D k x k x x( ) ( | | sat( ))q σ1 1
1 2 (17)

where = ⋯ ∈s t s s s R( ) [ , , , ]n
n

1 2
T are the sliding surfaces; sat(·) is the sa-

turation function; k k γ, ,1 2 are the given parameters, with
> > < <k k σ0, 0,0 1.1 2

The saturation function is given below [35],

= ⎧
⎨⎩

> >
⩽ >

k k k
k k k

sat(ϑ)
sign(ϑ/ ), |ϑ| , 0
ϑ/ , |ϑ| , 0 (18)

When the system trajectories reach the sliding surface in Eq. (17),
the following equations can be obtained as follows,

= =s t s t( ) 0 and ̇( ) 0 (19)

Based on Eq. (17), Eq. (19) and Property 1, the dynamics of the
sliding surface can be achieved as follows,

= + + =s t D x k x k x ẋ( ) ( | | sat( )) 0q σ
1 2 (20)

The sliding mode dynamic system is obtained as follows,

= − +D x k x k x x( | | sat( ))q σ
1 2 (21)

This implies that fractional-order sliding surface Eq. (17) will con-
verge to zero if and only if Eq. (21) is stable.

In order to demonstrate that the fractional-order sliding surface is
stable and the proposed fractional-order controller is robust and ef-
fective for the system in Eq. (16), the Lyapunov stability lemmas are
introduced, as follows,

Lemma 3 ([27]). If =x 0 is an equilibrium point for the fractional-order

Fig. 4. State trajectories in the commensurate-order FOESERS with =q 0.99.
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Fig. 5. Chaotic vibration in the incommensurate-order FOESERS with =q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 .

Fig. 6. State trajectories in the incommensurate-order FOESERS with =q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 .
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system =D f x t( , )q , and f x t( , ) satisfies the Lipschitz condition with the
Lipschitz constant >l 0, ∈q (0,1]. There exists a Lyapunov function
V t x t( ,( , )) satisfying the following conditions, and the system is asymptotic
stable,

⩽ ⩽
⩽ −

a x V t x t a x
V t x t a x

‖ ‖ ( , ( )) ‖ ‖
̇ ( , ( )) ‖ ‖

b
1 2

3 (22)

where a a a, ,1 2 3 and b are positive constants and ‖·‖ denotes an arbitrary
norm.

Lemma 4 ([24]). If =x 0 is an equilibrium point of the fractional-order
system =D f x t( , )q , there exists a Lyapunov function V t x t( , ( )) and class-K
functions =μ i( 1,2,3)i satisfying the following conditions, and the system is
asymptotic stable,

⩽ ⩽

⩽ −

μ x V t x t μ x

D V t x t μ x

‖ ‖ ( , ( )) ‖ ‖

( , ( )) ‖ ‖C
t t

q
1 2

30 (23)

where ∈q (0,1].

Theorem 1. If the sliding surface is designed as Eq. (17), the sliding mode
dynamic system in Eq. (21) is stable and its state trajectories will converge to
zero.

Proof. The Lyapunov function is selected as,

=V t x( ) | | (24)

and its fractional-order derivative is described as,

=
= − −
= − − ×

D V t x D x
x k x k x x

k x k x x x

( ) sign( )
sign( )( | | sat( ))

| | | | sign( ) sat( )

q q

σ

σ
1 2

1 2 (25)

Based on the definition of sat(·) function in Eq. (18), the following
equations are obtained,

= = >s s s k s s ksat( )sign( ) sign( / )sign( ) 1 (| | ) (26)

= × = > ⩽s s s k s s k s ksat( )sign( ) / sign( ) | |/ 0 (| | ) (27)

Based on Eqs. (25)–(27), it yields,

= − − × ⩽ − <D x k x k x x x k x| | | | sign( ) sat( ) | | 0q σ
1 2 1 (28)

This completes the proof. Based on Lemma 4, the sliding-mode
dynamic system in Eq. (21) is stable and its state trajectories will
converge to zero when the sliding surface is designed as Eq. (17). □

Based on Theorem 1, the appropriate sliding surface has been
formed. Then, a controller u t( ) which can ensure the state trajectories
reach the sliding surface =s t( ) 0 and make the system Eq. (16) remain
on it is specified.

The equivalent control law in Eq. (29) can be obtained by taking Eq.
(21) into Eq. (16).

= − + − − −u t k x k x x f x t f x t d t( ) ( | | sat( ) ( , ) Δ ( , ) ( ))eq
σ

1 2 (29)

This equivalent control can be considered as the mean value of the
discontinuous control on the sliding surface. In order to satisfy the
sliding condition in the presence of uncertain terms and external dis-
turbances, the discontinuous reaching law is assumed as follows,

= − − −u t k s k s k s( ) sat( ) sign( )r 3 4 5 (30)

where k3, k4, k5 > 0.
Then, the sliding mode control law can be described below,

= + = − + + −
− + − −

u t u u f x k x k x x k s
f x t d t k s k s

( ) ( ( ) | | sat( ))
(Δ ( , ) ( )) sat( ) sign( )
eq r

σ
1 2 3

4 5 (31)

The controller in Eq. (31) is not feasible as the uncertain terms and
external disturbances are unknown (i.e. f x t d tΔ ( , ), ( ) are unknown).
Hence, an implementable controller can be designed in Eq. (32), as
follows,

= + = − + + −
− + − −

u t u u f x k x k x x k s
s ξ ξ k s k s

( ) ( ( ) | | sat( ))
sign( )( ) sat( ) sign( )
eq r

σ
1 2 3

1 2 4 5 (32)

where ξ1, ξ2 are two constants, and ξ1, ξ2 > 0.

Theorem 2. Considering the FOESERS in Eq. (9) with the conditions
⩽ ⩽f x t ξ d t ξ|Δ ( , )| ,| ( )|1 2 and the control law is designed as Eq. (32). The

state trajectories of the FOESERS will converge to the sliding surface
=s t( ) 0 and remain on it in a finite time.

Proof. The Lyapunov function can be chosen as =V t s( ) 1
2

2 and its time
derivative can be described as follows,

=V t sṡ ( ) ̇ (33)

According to Eq. (20), it obtains,

= + +V t s D x k x k x ẋ ( ) ( ( | | sat( )))q σ
1 2 (34)

From Eq. (16), Eq. (34) can be rewritten as,

= + + + + +
= + + + + +

V t s f x f x d t u t k x k x x
s f x u t k x k x x s f x t d t

̇ ( ) ( ( ) Δ ( ) ( ) ( ) ( | | sat( )))
( ( ) ( ) ( | | sat( ))) (Δ ( , ) ( ))

σ

σ
1 2

1 2 (35)

Based on the conditions ⩽ ⩽f x t ξ d t ξ|Δ ( , )| , and | ( )|1 2, there is,

= + + + + +
⩽ + + + + +

V t s f x u t k x k x x s f x t d t
s f x u t k x k x x s ξ ξ

̇ ( ) ( ( ) ( ) ( | | sat( ))) sign( )(Δ ( , ) ( ))
( ( ) ( ) ( | | sat( ))) | |( )

σ

σ
1 2

1 2 1 2

(36)

Eq. (32) is substituted into Eq. (36), one yields,

⩽ − + + + + +

+ +
+ + + +
⩽ − − − − + + +
= − − −

V t s f x f x k x k x x k s s ξ ξ

k s k s
k x k x x s ξ ξ

s k s k s k s s ξ ξ s ξ ξ
s k s k s k s

̇ ( ) ( ( ) ( ( ) | | sat( ) sign( )( )

sat( ) sign( ))
( | | sat( ))) | |( )

( sat( ) sign( )) | |( ) | |( )
( sat( ) sign( ))

σ

σ

1 2 3 1 2

4 5

1 2 1 2

3 4 5 1 2 1 2

3 4 5

(37)

Due to × =s s ssign( ) | |, one has,

⩽ − − −
⩽ − − × −

V t s k s k s k s
k s k s s k s

̇ ( ) ( sat( ) sign( ))
sat( ) | |

3 4 5

3
2

4 5 (38)

Based on the definition of the saturation function sat(·), there is,

= >x x x x k s ksat( ) sign( / ) (| | ) (39)

= ⩽x x x k s ksat( ) / (| | )2 (40)

Due to x × sign(x)= |x|, one gets,

= = × = >x x k x
k

x k k x k x ksat( ) sign( / ) | / | | | ( 0) (41)

It follows Eqs. (39)–(41), it obtains,

⩽ − − × −
⩽ − − <

V t k s k s s k s
k s k s

̇ ( ) sat( ) | |
| | 0

3
2

4 5

3
2

5 (42)

According to Lemma 3, the state trajectories of the uncertain
FOESER in Eq. (9) will converge to =s t( ) 0, and the state vector x t( )
is asymptotically stable. Then, in order to prove that the stable motion
occurs within a finite time, the reaching time T can be obtained as
follows,

Due to =V t s( ) /22 , Eq. (42) can be written as,

⩽ − −V k V k V̇ 2 25
1/2

3 (43)

If =r k kmin( 2 ,2 )5 3 , then,

⩽ − +V r V V̇ ( 2 )1/2 (44)

Hence, Eq. (44) can be written as,

⩽ −
+

⩽ −
+

= −
+

−
dt dV

r V V
V

r V
dV dV

r V( ) ( 1) ( 1)0.5

0.5

0.5

0.5

0.5 (45)
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Eq. (45) is taken the integral of both sides from 0 to the reaching
time tri and the V(tri) is set as V(tri)= 0, one obtains,

∫⩽ −
+

= +t
r

dV
V r

V1
( 1)

1 ln( (0) 1)ri V

V t

(0)

( ) 0.5

0.5
0.5ri

(46)

Consequently, tri can be obtained as follows,

⩽ ⎛
⎝

+ ⎞
⎠

t
r

s1 ln 1
2

| (0)| 1ri
(47)

It implies that the state trajectories of uncertain FOESERS (9) with the
conditions ⩽ ⩽f x t ξ d t ξ|Δ ( , )| ,| ( )|1 2 will converge to the sliding surface

=s t( ) 0 in a finite time = = +( )T t sln | (0)| 1ri r
1 1

2 under the control
law in Eq. (32). □

4. Numerical simulations

In order to validate the robustness, efficiency, feasibility, and ap-
plicability of the proposed fractional-order controller in stabilizing the
uncertain FOESERS in a given time, the FOESERS with different frac-
tional orders and different uncertain terms and external disturbances is
presented as follows,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

= − − + + + +

= − + − + − − + + +

= − − − + − + + +

= + − − + + +

( )
( ) ( )

( ) ( )
( )

D x α x α x α x f d t u t

D x β x β x β x δ x f d t u t

D x γ x γ x γ x γ f d t u t

D x δ x δ x δ x f d t u t

1 Δ ( ) ( )

1 1 Δ ( ) ( )

1 1 Δ ( ) ( )

1 Δ ( ) ( )

q x
N

q x
K

x
L

q x
M

x
E

q x
C

1 1 1 2 2 3 3 1 1 1

2 1 1 2 2 3 3 4 4 2 2 2

3 1 1 2 2 3 3 4 3 3 3

4 1 2 2 3 3 4 4 4 4

1 2

2 2 3

3 1 4

4 3

(48)

The uncertain terms and external disturbances of FOESERS are
chosen as follows [30],

+ = +
+ = − +
+ = − −
+ = +

f X t d t t x t
f X t d t t x t
f X t d t t x t
f X t d t t x t

Δ ( , ) ( ) 0.1sin( ) 0.1cos( )
Δ ( , ) ( ) 0.1cos( ) 0.1cos( )
Δ ( , ) ( ) 0.1sin(3 ) 0.1cos(2 )
Δ ( , ) ( ) 0.1cos(5 ) 0.1sin( )

1 1 1

2 2 2

3 3 3

4 4 4 (49)

The initial conditions of the FOESERS can be predetermined as the
settings in [18]: =x (0) 0.0151 , = =x x(0) 0.785, (0) 1.832 3 , =x (0) 0.014 .
According to Eqs. (17) and (32), the parameters are selected as:

= = = = = = = =k k σ k k k ξ ξ10, 2, 0.2, 4, 1, 0.01, 0.1, 0.11 2 3 4 5 1 2 , and the
sliding surface and control law are designed as follows,

= + + ×− −s t D x D x x x( ) (10 2 | | sat( ))i
q

i i
σ

i
1 1i (50)

= − + + −
− + − − =

u t f x k x k x x k s
s ξ ξ k s k s i

( ) ( ( ) | | sat( ))
sign( )( ) sat( ) sign( ) 1,2,3,4

i i i i
σ

i i

i i

1 2 3

1 2 4 5 (51)

With the proposed sliding surface in Eq. (50) and robust control
scheme in Eq. (51), the state trajectories of the uncertain commensu-
rate-order FOESERS with =q 0.95 is shown in Fig. 7. Compared with
the state trajectories of the uncertain commensurate-order FOESERS
with fractional-order =q 0.99 which is shown in Fig. 8, the proposed
fractional-order controller is feasible and robust for the FOESERS with
different fractional orders. For the uncertain incommensurate-order
FOESERS with =q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 , the state trajectories
of the uncertain FOESERS are shown in Fig. 9. The proposed control
method is not only suitable for the uncertain FOESERS with < <q0 1,
but also is suitable for the uncertain ESERS with =q 1.0. (i.e. Integer-
order model of ESERS). The state trajectories of uncertain FOESERS
with =q 1.0 are illustrated in Fig. 10. It can be found that the uncertain
FOESERS with different fractional orders is asymptotic stable with the
proposed sliding mode control, and the state trajectories can converge
to zero promptly. Besides, the stabilized time under the proposed
controller is within 0.5 s. According to Eq. (47), the calculated finite

time is =t 0.95sri with initial value =s (0) [1,1,1,1]T , and it is shown that
the nonlinear vibration of the uncertain FOESERS is efficiently sup-
pressed in a finite time.

In order to confirm the robustness of the proposed controller, dif-
ferent uncertain terms and external disturbances of the FOESER are set
as follows [27],

+ = +
+ = − +
+ = − −
+ = +

f X t d t t x t
f X t d t t x t
f X t d t t x t
f X t d t t x t

Δ ( , ) ( ) 0.5sin( ) 0.2cos( )
Δ ( , ) ( ) 0.5cos( ) 0.2cos( )
Δ ( , ) ( ) 0.5sin(3 ) 0.2cos(2 )
Δ ( , ) ( ) 0.5cos(5 ) 0.2sin( )

1 1 1

2 2 2

3 3 3

4 4 4 (52)

The initial conditions of the FOESERS can be predetermined as the

Fig. 7. State trajectories in the commensurate-or der FOESERS with =q 0.95.

Fig. 8. State trajectories in the commensurate-or der FOESERS with =q 0.99.

Fig. 9. State trajectories in the incommensurate-order FOESERS with
=q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 .
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settings in [18]: =x (0) 0.015,1 = =x x(0) 0.785, (0) 1.832 3 , =x (0) 0.014 .
Based on Eqs. (17) and (32), the parameters are selected as:

= = = = = = = =k k σ k k k ξ ξ10, 2, 0.2, 4, 1, 0.4, 0.5, 0.21 2 3 4 5 1 2 , and the
sliding surface and control law are given in Eqs. (50) and (51), re-
spectively. With the proposed robust control scheme under system
uncertain terms and external disturbances in Eq. (52), the state tra-
jectories of the uncertain commensurate-order FOESERS, the uncertain
incommensurate-order FOESERS, and the integer-order model of ESERS
are shown in Figs. 11, 12 and 13, respectively. It is shown from the
results that the nonlinear vibration of the uncertain FOESERS is effi-
ciently suppressed in a finite time to confirm the robustness of the
proposed controller.

In addition, when the initial values of the sliding mode surface are
given, the stabilized time is only related to r according to Eq. (47). Due

to =r k kmin( 2 ,2 )5 3 , the stabilized time is related to k3 and k5. In order
to make the uncertain FOESERS stable in the minimum time, it is ne-
cessary to select the suitable values of k3 and k5, and k5 is the domi-
nated parameter as the value of k3 is much greater than k5. Here, k5 is
set to be 0.5 to test its effects on the control performance. With the
proposed robust control scheme under system uncertain terms and ex-
ternal disturbances in Eq. (52), the state trajectories of the uncertain
commensurate-order FOESERS, the uncertain incommensurate-order
FOESERS, and the integer- order model of ESERS are shown in Figs. 14,
15, and 16, respectively. It can be found that the state trajectories of the
uncertain FOESERS exists chattering phenomenon when k5= 0.5,
while the uncertain FOESERS is stable when 0 < k5⩽ 0.4.

5. Conclusions

In this paper, the fractional-order modeling of a four-dimensional
dynamic evolution ESERS is investigated, and then a sliding mode ro-
bust control method is proposed for FOESERS to cope with the un-
certainties and external disturbances. The main conclusions of the
proposed methodology are summarized as follows: (1) The Caputo
fractional-order calculus can be used to represent the evolutionary
dynamics of ESERS, and the investigations on complex behaviours of
the proposed FOESERS through the dissipative nature, equilibrium
points, and instability region indicate the nonlinear chaotic and un-
stable phenomena on energy conservation, carbon emissions, economic
growth, and renewable energy development; (2) Based on the Lyapunov
stability theorems and sliding mode control theory, the proposed robust
control method can ensure that the sliding motion occurs in a finite
time for stabilization and suppression for nonlinear vibration of
FOESERS under uncertainties and external disturbances. Numerical si-
mulations on the commensurate-order FOESERS, the incommensurate-
order FOESERS and the integer-order model of ESERS considering

Fig. 10. State trajectories in the commensurate-order FOESERS with =q 1.0.

Fig. 11. State trajectories in the commensurate-or der FOESERS with =q 0.99.

Fig. 12. State trajectories in the incommensurate-order FOESERS with
=q q q q( , , , ) (0.92,0.94,0.96,0.98)1 2 3 4 .

Fig. 13. State trajectories in the integer-order model of ESERS.

Fig. 14. State trajectories in the commensurate-or der FOESERS with =q 0.99.
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different uncertainty and external disturbances have been im-
plemented, and the comparative results confirms the effectiveness and
robustness of the proposed scheme.
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