656 research outputs found

    Impurity states in d-wave superconductors with a competing antiferromagnetic interaction

    Get PDF
    Impurity states in d-wave superconductors with a competing antiferromagnetic (AF) order are investigated by solving the Bogoliubov-de Gennes equations. The potential scattering (PS) model with moderate strength and the Anderson impurity (AI) model with on-site hybridization are employed to describe the weak impurities. In zero external field, the impurity-induced AF order is rather weak and both models are able to give rise to impurity resonant states with close energy and similar profile of the local density of states. In the mixed state, the effect of magnetic-field-induced AF order on the impurity quasiparticle excitation is also examined. We find that the response of the impurity state to the presence of a local AF order is quite different for the two impurity models when a superconducting vortex is pinned by the impurity. For the PS model, the impurity resonance is subtly dependent on the sign and strength of the scattering potential, while for the AI model in the strong hybridization regime, the low-lying resonance is pinned near the Fermi level within the small gap opened by the AF order and is insensitive to the strength of the coupling between the impurity spin and the conduction electron. Based on our numerical results, we think that the two models give rise to different behaviors of the impurity resonances for both the nickel and zinc impurities in the magnetic field and the prospective scanning tunneling microscopic observation might give a clue to the dominant mechanism of the impurity states in the high-T c cuprates.published_or_final_versio

    Electronic structure of the vortex lattice of d-, d+is-, and dx2-y2+idxy-wave superconductors

    Get PDF
    On the basis of the self-consistent Bogoliubov-de Gennes equations and a tight-binding lattice model, we investigate the quasiparticle spectrum of vortex-lattice state in pure d-, mixed d+is, and dx2-y2+idxy-wave superconductors. For a d-wave case, the local density of states (LDOS) at the vortex core shows a multipeak structure, and the positions of peaks as well as the width of splitting between peaks are sensitively dependent on both the magnetic-field strength and the orientation of the vortex lattice. For the mixed d+is- and dx2-y2+idxy-wave pairing states, we observe a double-peak structure of the local density of states at vortex center, where the two peaks are asymmetrically situated around the Fermi energy. By taking into account the matrix-element effect, the local density of states appears to be qualitatively consistent with the scanning-tunneling-microscopy experimental data.published_or_final_versio

    Testing and comparing two self-care-related instruments among older Chinese adults

    Get PDF
    Objectives The study aimed to test and compare the reliability and validity, including sensitivity and specificity of the two self-care-related instruments, the Self-care Ability Scale for the Elderly (SASE), and the Appraisal of Self-care Agency Scale-Revised (ASAS-R), among older adults in the Chinese context. Methods A cross-sectional design was used to conduct this study. The sample consisted of 1152 older adults. Data were collected by a questionnaire including the Chinese version of SASE (SASE-CHI), the Chinese version of ASAS-R (ASAS-R-CHI) and the Exercise of Self-Care Agency scale (ESCA). Homogeneity and stability, content, construct and concurrent validity, and sensitivity and specificity were assessed. Results The Cronbach's alpha (α) of SASE-CHI was 0.89, the item-to-total correlations ranged from r = 0.15 to r = 0.81, and the test-retest correlation coefficient (intra-class correlation coefficient, ICC) was 0.99 (95% CI, 0.99±1.00; P<0.001). The Cronbach's α of ASAS-R-CHI was 0.78, the item-to-total correlations ranged from r = 0.20 to r = 0.65, and the test-retest ICC was 0.95 (95% CI, 0.92±0.96; P<0.001). The content validity index (CVI) of SASE-CHI and ASAS-R-CHI was 0.96 and 0.97, respectively. The findings of exploratory and confirmatory factor analyses (EFA and CFA) confirmed a good construct validity of SASE-CHI and ASAS-R-CHI. The Pearson's rank correlation coefficients, as a measure of concurrent validity, between total score of SASE-CHI and ESCA and ASAS-R-CHI and ESCA were assessed to 0.65 (P<0.001) and 0.62 (P<0.001), respectively. Regarding ESCA as the criterion, the area under the receiver operator characteristic (ROC) curve for the cut-point of SASE-CHI and ASAS-R-CHI were 0.93 (95% CI, 0.91±0.94) and 0.83 (95% CI, 0.80±0.86), respectively. Conclusion There is no significant difference between the two instruments. Each has its own characteristics, but SASE-CHI is more suitable for older adults. The key point is that the users can choose the most appropriate scale according to the specific situation.publishedVersionNivÄ

    Thermal, dielectrical and mechanical response of α and ÎČ-poly(vinilydene fluoride)/Co-MgO nanocomposites

    Get PDF
    Nanocomposites of the self-forming core-shell Co-MgO nanoparticles, which were of approximately 100 nm in diameter, and poly(vinylidene fluoride) (PVDF) polymer have been prepared. When the polymer is crystallized in the α-phase, the introduction of the nanoparticles leads to nucleation of the γ-phase of PVDF, increasing also the melting temperature of the polymer. With the introduction of the Co-MgO particles, the dielectric constant of the material slightly increases and the storage modulus decreases with respect to the values obtained for the pure polymer

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Terahertz metamaterials on flexible polypropylene substrate

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11468-014-9724-1In this work, we present a metamaterial working at terahertz frequencies made over a flexible polypropylene sub-strate. The experimental measurements, in accordance with the numerical calculations, show the metamaterial reliance on the impinging electric field polarization. The structure s symmetry yields purely electrical resonant responses eliminating bianisotropy effects. The widely used bendable polypropylene polymer may promote the insertion of metamaterial-based structures with special electromagnetic response in a number of objects of our daily lives such as textiles, automotive components, and sensingThis work was supported by the Spanish MICINN under contracts CONSOLIDER EMET CSD2008-00066 and TEC2011-28664-C02-02 and by the Universitat Politecnica de Valencia under the program INNOVA 2011.Ortuño Molinero, R.; GarcĂ­a Meca, C.; MartĂ­nez Abietar, AJ. (2014). Terahertz metamaterials on flexible polypropylene substrate. Plasmonics. 9(5):1143-1147. https://doi.org/10.1007/s11468-014-9724-1S1143114795Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780–1782Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980RodrĂ­guez-CantĂł PJ, MartĂ­nez-Marco M, RodrĂ­guez-Fortuño FJ, TomĂĄs-Navarro B, Ortuño R, PeransĂ­-Llopis S, MartĂ­nez A (2011) Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Opt Express 19:7664–7672RodrĂ­guez-Fortuño FJ, MartĂ­nez-Marco M, TomĂĄs-Navarro B, Ortuño R, MartĂ­ J, MartĂ­nez A, RodrĂ­guez-CantĂł PJ (2011) Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Appl Phys Lett 98:133118O’Hara FJ, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16:7181–7188Iwaszczuk K, Strikwerda AC, Fan K, Zhang X, Averitt RD, Jepsen PU (2012) Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express 20:635–643Tao H, Bingham CM, Strikwerda AC, Pilon D, Shrekenhamer D, Landy NI, Fan K, Zhang X, Padilla WJ, Averitt RD (2008) Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B 78:241103(R)Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D: Appl Phys 43:225102Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96:107401Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444:597–600Chen HT, O’Hara FJ, Azad AK, Taylor AJ, Averitt RD, Shrekenhamer DB, Padilla WJ (2008) Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photon 2:295–298Chen HT, Padilla WJ, Zide JMO, Bank SR, Gossard AC, Taylor AJ, Averitt RD (2007) Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt Lett 32:1620–1622Chen HT, Palit S, Tyler T, Bingham CM, Zide JMO, O’Hara FJ, Smith DR, Gossard AC, Averitt RD, Padilla WJ, Jokerst NM, Taylor AJ (2008) Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl Phys Lett 93:091117Chen HT, Padilla WJ, Cich MJ, Azad AK, Averitt RD, Taylor AJ (2009) A metamaterial solid-state terahertz phase modulator. Nat Photon 3:148Driscoll T, Andreev GO, Basov DN, Palit S, Cho SY, Jokerst NM, Smith DR (2007) Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl Phys Lett 91:062511Debus C, Bolivar PH (2007) Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91:184102Al-Naib IAI, Jansen C, Koch M (2008) Thin-film sensing with planar asymmetric metamaterial resonators. Appl Phys Lett 93:083507Leonhardt U, Philbin TG (2010) Geometry and light: the science of invisibility. Dover, MineolaDi Falco A, Ploschner M, Krauss TF (2010) Flexible metamaterials at visible wavelengths. New J Phys 12:113006Tao H, Strikwerda AC, Fan K, Bingham CM, Padilla WJ, Zhang X, Averitt RD (2008) Terahertz metamaterials on free-standing highly-flexible polyimide substrates. Appl Phys 41:232004Tao H, Amsden JJ, Strikwerda AC, Fan K, Kaplan DL, Zhang X, Averitt RD, Omenetto FJ (2010) Metamaterial silk composites at terahertz frequencies. Adv Mater 22:3527–3531Chen ZC, Han NR, Pan ZY, Gong YD, Chong TC, Hong MH (2011) Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates. Opt Mat Express 1:151–157Miyamaru F, Takeda MW, Taima K (2009) Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region. Appl Phys Express 2:042001Peralta XG, Wanke MC, Arrington CL, Williams JD, Brener I, Strikwerda A, Averitt RD, Padilla WJ, Smirnova W, Taylor AJ, O’Hara FJ (2009) Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies. Appl Phys Lett 94:161113Choi M, Lee SH, Kim Y, Kang SB, Shin J, Kwak MH, Kang KY, Lee YH, Park N, Min B (2011) A terahertz metamaterial with unnaturally high refractive index. Nature 470:369–373Han NR, Chen ZC, Lim CS, Ng B, Hong MH (2011) Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt Express 19:6990–6998Aznabet M, Navarro-Cia N, Kuznetsov SA, Gelfand AV, Fedorinina NI, Goncharov YG, Beruete M, Mrabet OE, Sorolla M (2008) Polypropylene-substrate-based SRR- and CSRR- metasurfaces for submillimeter waves. Opt Express 16:18312–18319Padilla WJ, Aronsson MT, Highstrete C, Lee M, Taylor AJ, Averitt RD (2007) Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys Rev B 75:041102(R)Chen HT, O’Hara FJ, Taylor AJ, Averitt RD, Highstrete C, Lee M, Padilla WJ (2007) Complementary planar terahertz metamaterials. Opt Express 15:1084–1095Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–208
    • 

    corecore