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1 Introduction

Fourth-order boundary value problems have attached much attention from many authors;
for example, see Sun and Wang [1], Yao [2], O'Regan [3], Yang [4], Zhang [5], Gupta [6],
Agarwal [7], Bonanno and Bella [8], and Han and Xu [9]. In particular, we would like to
mention some results as follows. In [10], Zhang and Liu studied the following fourth-order
four-point boundary value problem:

(p(x"(1))" = w(@)f (£, x(2)), te]0,1],
x(0) =0, x(1) = ax(§),
x"(0) =0, x"(1) = bx"(n),

where 0 < &, <1, 0 < a < b < 1. By using the upper and lower solutions method, fixed
point theorems, and the properties of the Green’s functions G(,s) and H(t, s), the authors
gave sufficient conditions for the existence of one positive solution.

Zhou and Zhang [11] employed a new existence theory to study the fourth-order
p-Laplacian elasticity problems:

(") =F(t,y,y"), 0<t<l,

ay(0) - by'(0) = folg(s)y(s) ds,

ay(l) + by (1) = [, g(s)y(s) ds,

Dn("(0)) = (" V) = [y H(OPm(y'(2)) dt,

where a,b > 0,] = [0,1], ¢,,(s) is an m-Laplace operator, i.e. ¢,,(s) = |s|"2s, m > 1, ()L =
Gt s % + % =1, F:[0,1] x R x R — R is continuous. In their paper, a new technique

for dealing with the bending term of the fourth-order p-Laplacian elasticity problems was
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introduced and several new and more general results were obtained for the existence of at
least single, double, or triple positive solutions.
Feng [12] studied a fourth-order boundary value problem with impulses and integral

boundary conditions,

(@' @)) =ft,y(®), telo1],t#tk=12,....n,
AJ’ |t t =—1/<(y(tk) , k=1,2,...,m,

1) [ g(s)y(s) ds,
‘f’p(y" = (0" (V) = [y () (v (s)) dis

By using a suitably constructed cone and fixed point theory for cones, the existence of
multiple positive solutions was established. Some papers considered the existence, multi-
plicity, and nonexistence of positive solutions for fourth-order impulsive differential equa-
tions with one-dimensional m-Laplacian; for example, see [13-17]. Most recently Feng
and Qiu [18], studied a fourth-order impulse integral boundary value problem with one-

dimensional m-Laplacian and deviating arguments:

(@) = L0 @)f (£, y(x(?))), te,t#ti,k=12,...,n,
AJ’ |: :k = —,U«Ik(tk;y(tk)) k=1,2,...,n,
fo s)ds,
)+ by fo ds,
¢>m 0’” =m0y’ (1) fo Dem (' (t)) dt

We see that in the above system the right-hand side function f has nothing to do with
the term y/, the jumping function I; does not contain the term y'(#). What is more, there
is no restriction on the impulses for state function, i.e. Ay|,-;, does not appear. Definitely
for more extensive applications, we would better consider the following boundary value

problem:

(D)) =f(&,9,y), te]l,t#tr,k=12,....,m
AYle=y = L((80)),  k=1,2,...,m,

AY ey =L(t),y (&), k=12,...,m
ay(0) - by 0> folg(s)y (s)ds,

ay(l) + by'(1 fo s)ds,

dm(y"(0)) = P (y"(1 ) = fo Hbm(y'(£)) dt

(1.1)

where a,b > 0, ] = [0,1], ¢,,(s) is an m-Laplace operator, i.e. ¢,,(s) = |s|"2s, m > 1, (¢,,) "' =
Gor 2+ =1L, 0=tg<ti<ty< <l < <by<tma=Lf€CI xR xR R, Ix €
C[R",R"], I € C[R" x R",R"], Ayli—g, = y(E7) — y(£), here y(£f) and y(¢;) represent the
right-hand limit and left-hand limit of y(¢) at £ = #, respectively. Ay'|;—, has a similar
meaning for y'(¢). In addition, f, g, and / satisfy the following conditions.

(H1) f e C[J x R" x R",R"], Ayl—y, = y(t5) — y(£;), where y(£;) and y(¢;) represent the

right-hand limit and left-hand limit of y(¢) at ¢t = #, respectively;
(H2) Ix € C[R",R"], Iy € C[R" x R",R"];
(H3) g,k € L'[0,1] are nonnegative and & € [0,a), v € [0,1) where

1 1
£= /0 ¢tydt,  v= /0 h(t) dt. (1.2)
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The remainder of the paper is organized as below. In Section 2, we give the expression of
the solution to BVP (1.2). For this purpose, we do some computation and estimation of the
Green’s function. In Section 3, we show the existence and uniqueness of solutions to BVP
(1.2) by the Schauder fixed point theorem and contraction mapping theorem. Section 4

gives an example to illustrate our main result.

2 Preliminaries and lemmas
We shall reduce problem (1.1) to an integral equation. To this aim, first, by means of the

transformation

b (Y (1)) = —x(2),
we convert problem (1.1) into

X' +f(t,y,y)=0, te],

x(0) = x(1) = [y h(t)x(t) dt (21)

and

Y'(t) = = (x(2)), te],tF#t,

Ayli-y = I(t), k=1,2,...,m,

AY ey, = @), Y (%)), k=1,2,...,m, (2.2)
ay(0) - by (0) = [, g(s)y(s) ds,

ay(1) + by (1) = [ g(s)y(s) ds.

Lemma 2.1 If (H1), (H2), and (H3) hold, then problem (2.1) has a unique solution x(t),
which is given by

1
x(t):/0 H(t,s)f(s,y,y/) ds,

where
1
H(t,s) = G(t,s) + L'/ G(s,t)h(z)dT, (2.3)
1-v 0
G(t,s):{t(l_s)’ 0<t<s<l, (2.4)
s1-¢), 0<s<t<l

Proof Integrating (2.1) from 0 to ¢ we get
t
x'(t) —x'(0) = —/ f(t,y,y/) dt,
0
t
X () = +'(0) - / f(tyy)dt.
0
Integrating it again, we have

x(¢) — x(0) = x'(0)t — /(; (t- s)f(s,y,y/) ds,
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x(t) = 2(0) + &' (0)t — / t-s)f(s,3,7)ds.
0
From (2.1) we know that x(0) = x(1) = fol h(t)x(t) dt. Letting t = 1 we then obtain
1
x(1) = x(0) + %'(0) — /(; A -9)f(s,9.y) ds.
Hence
1
«/(0) = / 1- s)f(s,y,y’) ds.
0
Thus we get

1 1 ¢
x(t) = ./o h(t)x(t) di + t/o A-9)f(s,.))ds— /0 t-s)f(s,3,¥) ds. (2.5)

In order to get the expression of x(¢), different from [3], we multiply both sides of (2.5)
with function /(t) and then integrating it from 0 to 1, we have

1 1 1 1 1
/o h(t)x(t)dt:/() h(s)als/0 h(t)x(¢) dt+/(; th(t)dt‘/o A-9)f(s9.y)ds
1 t
—/ h(t) dt/ (t-9)f(s,0.))ds
0 0
and
1 1 1
a- v)/0 h(t)x(t) dt = /0 th(t) dt/o a- s)f(s,y,y ) ds
1 t
_/ h(t) dt/ t-s)f(s,3,7)ds.
0 0
Hence,
1 1 1 1
/o h(t)x(t) dt = o (‘/(; th(t) dt/(; 1- S)f(s,y,y ) ds
1 ¢
- / h(t) dt/ t-s)(s2)) ds). (2.6)
0 0

Finally, we obtain

1 1 1 , 1 t /
x(t)=r< /0 th(t) dt fo (1-5)/(5,9,5/) ds - /0 H()dt /0 (t—s)f(s,y,y)ds>
1 1
+t/0 (l—s)f(s,y,y)ds—/o A -9)f (53,5 ds
1 1 1 P
= %(/0 /0 th(t)(l—s)f(s,y,y’)dtds—/o /0 h(t)(t—s)f(s,y,ﬂ)dsdt)

1 1
+/; t(l—s)f(s,y,y/)ds—/0 (1—s)f(s,y,y/)ds
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1 1 1 t
_ /0 E( /0 ¢(1 - (e dt - /0 (t—s)h(t)dt)j(s,y,y/)ds

1 1
+A t(l—s)f(s,y,y/)ds—‘/o (l—s)f(s,y,y’)ds
1 1 t ,
=/0 m(/o t(l—s)h(t)dt—/(; (t—s)h(t)dt)j(s,y,y)ds
t 1
1- L9,y ) ds — 1- .9,y ) ds.
+/Os( 0f (5,3, ds /tt( ) (s,3,¥') ds
Thus
1
x(¢) =/ H(t,5)f (s,9,5) ds,
0
where

1
H(t,s) = G(t,s) + L[ G(s,t)h(t)dT,
VJo

1-
tl-s), 0<t<s<l,
Glt,5)= | 175k O=t=s=
s1-¢), 0<s<t<l
This completes the proof. d

Let e(t) = £(1 —¢). Then from (2.3) and (2.4) we can prove that H(¢,s) and G(t, s) have the
following properties.

Lemma2.2 Let G(t,s) and H(t,s) be given as in Lemma 2.1. Assume that (H3) holds. Then
we have
H(t,s) >0, G(t,s) >0, Vtse(0,1),

H(t,s) >0, G(t,s) >0, Vtse],

e(te(s) < G(t,s) <G(t,t)=t(l-t)=e(t) <e= rrtla]X e(t) = i, Vt,s €],

1
pe(s) < H(t,s) <ys(l-s)=ye(s) < A Vt,s€],

where

1 [y e()h(z)dr
v=r— P
1-v 1-v

Lemma 2.3 If (H1), (H2), and (H3) hold, then problem (2.2) has a unique solution y(t)
expressed in the form

1 m
y(t) = /0 Hy(t, ) (x(5) ds — Y H(t 8T (v(te), ¥ (&)
k=1
- ZHZ(t)[k ((tx)),

k=1
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where

Hl(t,S) = Gl(t,S) +

1 1
ﬂ—f/o Gi(s, 7)g(r)dr,

b+as)(b+a(l-1), 0<s<t<],
b+at)b+al-s)), 0<t<s<l],

at—a->b at—a->b
Hat) = - sf ot

Gl(t,S) = % {

a+2b a+2b

and d = a(a + 2b).

Proof First, we assume that t € I, I; = (¢;,t;,1) (i =0,1,2,...,

(2.2) from ¢; to ¢, we get

7(6) -0 = [ e (s10)
Y(6) =7 ) == [ b (st0) s

YO -y (&) / o ((0)) d

Adding the above equations, we find

YO -y ) - > () -7 (&) =- fo b (x(2)) dit

kitg<t

YO =y + Y V() -y (&) - /0 P (%(2)) dt

kitg<t

YO =50+ 3 T(yie0,y(®) f b (x(0))

kitg<t

Similarly, we can get

) = (0) +5/(0)¢ - /0 (¢ = 5) e (x(0)) dis
+ (= )y, Y (80) + Y I(y(t).

ki<t ki<t

Let £ =1in (2.10) and (2.11). We obtain

Page 6 of 15

2.7)

(2.8)

(2.9)

m). Integrating both sides of

(2.10)

(2.11)

by (1) = by (0) + b Y 4y, o T((8), ¥ (&) = b [y b (x(2)) dlt

ay(1) =ay(0) + ay'(0) —a fol(l — 8)@yx (x(s)) ds

+aY gyl = t (Y (t), ' () + a 2 ket L O/(8)).-
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It is easy to get

1
ay(1) + by (1) = ay(0) + (@ + )y (0) —a /0 (1= 5) e (x(5)) s

va Yy (-t)L(yw),y @) +a ) k(yw)

kitg<t

k:ty<t
+b Z Ik tk) y tk / (bm* t)
kitg<t
1
= / g(s)y(s)ds,
0

which implies

1
ay(0) + (a+ by (0) = a /0 (1= ) (x(5)) ds

—a > (- h(y6),y (%)

-a Z I(y(t)) - b Z L (v(t), y (8)

kg <t

1
+ b/o P (x(t)) dt +/0 g(s)y(s) ds.

Then we have the following equations:

ay(0) + (a + b)y (0)

=a fol(l = 8)P» (%(s)) ds — a Zk:tkq(l - tk)jk()’(tk)’y,(tk))
=8 kst IOE)) = b Yy LY (80), 5 (1))
- bfo ¢m* (t)) dt + fo (s)y(s) ds,

)=y g
Obviously,
70 = Lo [0 (0) d - @ 3 -k )
—akZ L(y(te)) ka L(y(t),y (t)) + b / P (%(0)) dt:|
§0 =l / (1= e (59 ds—ak%u—tk)ik(y(tk),y’(m)
—a ) L(yw)-b Y L(y(t),y &) +h/ Do (x }
b foe

1 1
+ ;/o g(s)y(s) ds.
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Substituting (2.10), (2.11) in (2.9), we have

b
1012~ [ 0= () s -0 31 10t )

kitge<t

—a ) L(y®)-b Y Le(y(t),y (&) + b / G (%(D)) dt:|

kty<t kitye<t

1 1 1
+ /0 g2(s)y(s)ds + — 2 |:a/0 (1= ) (x(s)) ds

—a Yy (- t)(yt),y @) —a Y L(y(t))

kty<t k:tg<t
-b Z Ik tk tk + b/ ¢m* t) dti|
k:ty<t

f (= )b (50) ds + 3 (¢~ )T (3120, 10) + 3 L8,

kitg<t kitg<t

In a similar way as the proof of (2.6) in Lemma 2.1, we get

1 a b 1 1
/o g(s)y(s)ds = oy { sar2D) [ /0 g(t)dta /0 (1= 8)y= (x(2)) ds

~-a Z 1 - L (y(8),y () — a Z Le(y(t))

ki<t k:ty<t
—bZIk (), ¥ (k) +b/ (,‘bm* ]
kty<t

1 1
+ Y /0 g(t) dt[a/o 1 - 8)p+ (x(s)) ds
-a Z A= ) (Y(t),y () — a Z Le(y(tn)

kg <t kty<t

~b > Ly, () + b / G (%(0)) dt]

ki<t

_/ g(t) dt/ (t — 8) Py (x(s)) ds
0 0
_ 1
+ Z(t—tk)fk(y(tk),y/(tk))/o g(t)dt+/ g Z L(y(®) dt}.

k:ty<t k:ty<t

Hence, we finally get

"o =~ 2b)[ / (1= ) (x(5)) ds —a Y (1= )l (y(0), ¥ (&)

kit <t

—a Z I y(tk) -b Z[k (%) y(tk) +b/ ¢m* x(t) dt:|

kty<t kitge<t
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a b 1 1
Ta-g { ala +2b) [ fo g(t)dta fo (1= )@+ (x(s)) s
—a Z (1 - ) (¥(&), ¥ (&) — a Z L)

kty<t ktg<t
—b}jh@ﬂwaﬂm»+b[;@ﬁ@u»dq
ki<t

1
/ g(t)dt[ / (1= ) (x()) ds —a Y (1 - eI (y(t), ¥ ()

+
a+2b ), oo
—-a Zlk y(tk -b Zlk () y(tk +b/ ¢m* x(t dt]
kty<t kg <t

1 t 1
_ d — 8) d - 1) Ly d
[ et [ (¢-0 (0 ds+ 6= s0lbotey @) [ ety

ktg<t

o 0t Y (y(tk))}

kg <t

[ f (L= ) (x(5)) ds —a 3 (1= 8 (y(80), ¥ (1)

" a+2b kpet
—uZIky(tk bZIk (k) y(tk +b/ ¢m* ]
ktk<t ktk<t
/ (t = ) (x9) ds + 3 (6~ T3ty @) + 3 Leo(w).
ktg<t ktg<t

Hence

y(t) = /Hl(r ) (x(s)) ds Zm(t I (1), y (8)) ZHz(t)Ik (r(t0)),

k=1 k=1

where

1 1
Hi(t,s) = Gi(¢t,s) + - ./o Gi(s, 7)g(r)dr,

(t )_l b+as)(b+al-t), 0<s<t<l,
d|bra)b+al-s), 0<t<s<l,

H(t)_ut—a—b+ /at a-— b
PR YA a—§& a+2b

Then the proof is completed.

Page 9 of 15

O

It follows from (2.7), (2.8), and (2.9) that Hi(t,s), Gi(t,s), and H(¢) have the following

properties.

Lemma 2.4 Suppose (H3) holds and assume that Gi(t,s) and H,(t,s) are given as in

Lemma 2.3. Then we have

1 b)?
EbZSGﬂt,S)EGl(s,s)g (a+b) ,

Vt,se],

(2.12)
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a
P1 S Hl(t»s) S E Gl(sx S) S P25 VtyS S ]1 (2'13)
a p—
Hj(t) < pa, (2.14)
where
52 b _by! _ala+Db)?
Ta+b =i pz_(a—é)d'

Proof Clearly, it follows from the definition of G; (¢, s) that (2.12) holds. Now we show that
(2.13) and (2.14) are true.
In fact, for £ € [¢,1] and s € ], we have

1 1
Hi(t,s) = Gi(t,s) + pay: /0 Gi(s,7)g(r)dt

£ ala + b)?
G y = »
s I(SS)+a—§ 15 )_( “oa
at—a->b at—a— b at & at
Ha(0) = a+2b +a “g‘/ a+2b dt§a+2b+a—“§a+2b'
at a (a+b)?

<
a+2b " a+2b~ a+2b’

Consequently,

(@a+b)> & (a+b)? ala+b)?
Ha(6) = a+2b +a—§ a+2b  (a-&)d =P 2.15)

This completes the proof. d
Combining Lemma 2.1 with Lemma 2.3, we can get directly the following result.

Lemma 2.5 Assume that (H1)-(H3) hold. Then y(t) has the following form:

1 1
J’(t) 2/0 Hl(t’s)¢m* (/0 H(S, T)f(t;y(f),y,(f)) dT) ds

- ZHI(t» 8T (y(8), ¥ (t)) - ZHz(t)Ik(J’(fk))~
k=1

k=1

Proof The conclusion is so straightforward that we omit it here. O

We next give some notations and a fixed point theorem which will be used to prove our
main results. Let

PC'[J,R"] = {y:] — R" | y/(t) is continuous when ¢ # t, y(£{ ), y(¢*), ¥/ (££), ¥ (£)

exist and y(t,:) =y(te), k=1,2,..., m}

Clearly, PC[J, R"] is a Banach space with the norm ||y||pc1 = max{||y|lpct, 1Y/l pct }-
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Lemma 2.6 [19] H C PC'[J,R"] is a relatively compact set if and only if Vy € H, y and y'
are uniformly bounded in | and equi-continuous on Ji (k=0,1,2,...,m).

Definition 2.1 A function y € PC! is said to be a solution of (1.1) if it satisfies every equa-
tion in system (1.1).

Lemma 2.7 (Schauder fixed point theorem) IfK is a nonempty convex subset of a Banach
space V and T is a continuous mapping of K into itself such that T(K) is contained in a

compact subset of K, then T has a fixed point.

Definition 2.2 Define an operator A : PC'[J,R"] — PC'[J, R"] by

1 1
w0 = [ e ([ Hsay (o) da)ds

- Z Hy(t, 61k (y(8), ¥ (1)) = Z Hy (DI (y(t)). (2.16)
k=1 k=1

Lemma 2.8 Assume that (H1)-(H3) hold. Then y(t) € ] is a fixed point of A if and only if
y(2) is a solution of problem (1.1).

Lemma 2.9 The operator A : PC'[J,R"] — PC'[J,R"] is completely continuous.

Proof According to (2.16) we have

1 1
(A (0) - /0 H;t(t,swm*( /0 H(m)f(uy,y’)dr) ds

- Z Hi (6,60 I (y(8), ¥ (1)) - Z Hy (I (y(t)). (2.17)
k=1 k=1

From (2.16) and (2.17) we know that A : PC[J,R"] — PC![J,R"] is continuous. For any
bounded set S € PC'[J,R"], and any function y(¢) € S, we see that (Ay)(¢) and (Ay)'(t)
are uniformly bounded and equi-continuous on Ji (k = 0,1,2,...,m). Hence, according
to Lemma 2.6 we see that A(S) is a relatively compact set, therefore A is a completely
continuous operator. |

3 Main results
Let

_ &35l )
= 1 L ALl aL i
p |y||+||1yr/n—>oo(¢m*(||yll 1yl
5 T (nzk(y)n)

Iyl—=oo\_ Iyl

Br=lim (M) k=1,2,...,m).

Iyl+1y =00 \ I¥Il + 15/l
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Theorem 3.1 Assume that (H1)-(H3) hold. Let n = max{ny, n2} < 1, then (1.1) has at least

one solution, where

m =202 (%) + 2mpa i + mpa i

M2 = 2030 (%) +2mp3Bi + mpaPr.
Proof From the definition of 8, there exists N > 0, s.t.

I (&35 | < Bw (191 + |5])) VEET, e (¥l + | ]) =N
Similarly, we get

|LO)] < Biliyl,
17coy) | < Be(lyl + [, ¥y € R (k=1,2,....m).

This together with (2.14), (2.15) implies that

1 1
[an®)] = H | Hl(r,s)qsm*( | H(s,r)f(r,y,y’)dt) s
0 0

=D Hi(6 ),y () - ZHz(t)Ik (o)

k=1

pz¢m*</Hs, (t,y(x),y (1)) d )H

+mpa(Be(lyll + 1|5 ])) + mo2Bellyl

< pature ( LByl + [5/]) ) + 2mp2Beliyll + mpn Billy
4
vB =

< 202 (T) Iyl + 2mpaBilly |l + mpaBilly

< <2p2¢m* (%) +2mpa P + m,ozﬁk) Il
<mlyl

< iy,

where 11 = 2,02¢m*(%) +2mpy B + mp2 .
From (2.7), (2.8), and (2.9), we have

—a(b + as), 0<s=<t<1,

Hu(tS)—Gu(t)‘_ ab+a(l—s), 0<t<s<l1,

a+b

max |Hy,(¢,5)| = max |G}, (t,9)] < cliﬂ(ﬂ +b) =

t,s€] t#s t,s€] ts a+ 2b = P
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and
a
H)(t) = —— ,
2( ) = Tob = = P2

which together with (2.17) imply
1 1
@] - | [ Hiene ([ 1600 (05)de ) as
0 0

—ZH(t 8T (&), (1) = Y Hy (I (y(te))
k=1

k=1

< 3B <§ﬁ¢m(nyn + Hy’ll)) +mpa(Be(lyll + || ])) + moaBellyl
< 3 <—ﬁ)(ny|| + ] + 2mps Beliyll + mpa Belly

< (2,03¢m* (%) +2mp3 By + mpzﬁk) Iy
< nalyl
< lixll,
where 05 = 203¢u+ (X2) + 2mp3 i + mpa Py
On the other hand, according to Lemma 2.9, we know operator A is a completely con-

tinuous operator. Together with Lemma 2.6 (Schauder fixed point theorem), we know A
has a fixed point in PC'[J, R"]. O

Theorem 3.2 Assume that (H1)-(H3) hold. If there exist nonnegative real numbers o, oy,

Ay, S.L.

[ @ () = 8 )] < (Il = 1),
|2(er') = () | < @il =l + [ -

|2c@) = )| < el =y,

Y1)

and & = max{&, &} <1, then (1.1) has a unique solution, where

&1 = P22 + 2may + may),

& = 2030 + 2mpP30; + M.

Proof From (2.16) and (2.17), similar to the proof of Theorem 3.1, we get
1 m
(An)(0) - (A)(0) = / Hi(6,) (e () - b 0) + 3 Hi(t 80 (T (1Y) - T (%))
0 k=1

+ D HO ) - ).
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Computing straightforwardly we have

[(Ax)@) - @)@ < poar(lle—y11) + D poc(lx =yl + [ = y']))
k=1

+ ipzak(llx -l

k=1

< palo + 2ma + may) |l — ¥l per
= &1llx = yllpct

<é&lx=ylpc-

Also we obtain
1
(A3 0) - A9 (0= [ Hi6.9)(80e )= 61 )

+ ZH{(t, 8 (L (hy) = Ik (%)

k=1

+ Y HyO(L) - L)),

k=1
[(Ax) (&) - (Ay) @)| < psetllx =yl + mpsax(llx = yll + |« =y ||) + mpsollx - yll
< (p3a + 2mps0 + mpa0) |lx — ¥l per
=&lx - ylpcr

<&llx—-yllpct-

It follows from & <1 that A has a unique fixed point and therefore (1.1) has a unique solu-
tion. 0

4 Example

In this section, we will illustrate the main results by a simple example.
Letn=1t=3%a=b=1L01)=L0tyY®) =5 ft0Y)=Jt-y+y - 5y -

3In(1 + y?), and g(s) = %, h(t) = %, m =3 in ¢,,. Then equation (1.1) turns to the following

equation:

(@) = Jt—y+y — 5y -3In(1+y), tet#3,
Ayl g =3

AY -y = 1

7(0) = y(0) = [ $y(s)ds,

yD) +y@) = [, 1y(s)ds,

$5(/(0)) = b3 (v (1)) = [} Lbs (v (8)) dit.

(4.1)

Following Theorem 3.1, we have the following result.

Theorem 4.1 The problem (4.1) has at least one positive solution.
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Proof Obviously, f(t,y,y) € C[J x R* x R",R"], L(y(t,)) € C[R"R"], Li(y(t1,y(t))) €
C[R" x R",R"]. From (4.1), we get

1
IFEny) | = yeeyl+ o]+ 7 1y ] +3m@+ i),

1Lk = , Vtelyy erR’,

N =

1 T /
5 @y =

soweget B< A, B1=0,$1=0,0=2,03=2,y=20¢ (L)< /5.
Hence, n; <,/ % <l,nm=< % <lLn<,/ % <1.From Theorem 3.1, we get the result.
This completes the proof. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

The authors express their sincere thanks to the anonymous reviews for their valuable suggestions and corrections for
improving the quality of the paper. This work was supported by NNSF of China No. 11431008 and NNSF of China

No. 11271261.

Received: 10 December 2015 Accepted: 29 March 2016 Published online: 14 April 2016

References
1. Sun, JB, Wang, XQ: Monotone positive solution of nonlinear beam equations with nonlinear boundary conditions.
Math. Probl. Eng. 2011, Article ID 609189 (2011)
2. Yao, QL: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 374,
681-692 (2011)
3. O'Regan, D: Solvability of some fourth (and higher)order singular boundary value problems. J. Math. Anal. Appl. 161,
78-116(1991)
4. Yang, B: Positive solutions for the beam equations under certain boundary conditions. Electron. J. Differ. Equ. 2005,
78 (2005)
5. Zhang, XG: Existence and iteration of monotone positive solutions for an elastic beam equation with a comer.
Nonlinear Anal., Real World Appl. 10, 2097-2103 (2009)
6. Gupta, GP: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26, 289-304
(1988)
7. Agarwal, RP: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2, 91-110 (1989)
8. Bonanno, G, Bella, BD: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343,
1166-1176 (2008)
9. Han, GD, Xu, ZB: Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. TMA 68,
3646-3656 (2008)
10. Zhang, XG, Liy, LS: Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator.
J.Math. Anal. Appl. 336, 1414-1423 (2007)
11. Zhou, YL, Zhang, XM: New existence theory of positive solutions to fourth order p-Laplacian elasticity problems.
Bound. Value Probl. 2015, 205 (2015)
12. Feng, MQ: Multiple positive solutions for fourth-order impulsive differential equations with integral boundary
conditions and one-dimensional p-Laplacian. Bound. Value Probl. 2011, Article ID 654871 (2011)
13. Afrouzi, GA, Hadjian, A, Radulescu, VD: Variational approach to fourth-order impulsive differential equations with two
control parameters. Results Math. 65, 371-384 (2014)
14. Cabada, A, Tersian, S: Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive
differential equations. Bound. Value Probl. 2014, 105 (2014)
15. Sun, JT, Chen, HB, Yang, L: Variational methods to fourth-order impulsive differential equations. J. Appl. Math.
Comput. 35,323-340 (2011)
16. Xie, JL, Luo, ZG: Solutions to a boundary value problem of a fourth-order impulsive differential equations. Bound.
Value Probl. 2013, 154 (2013)
17. Zhang, XM, Feng, MQ: Positive solutions for classes of multi-parameter fourth-order impulsive differential equations
with one-dimensional singular p-Laplacian. Bound. Value Probl. 2014, 112 (2014)
18. Feng, MQ, Qiu, JL: Multi-parameter fourth order impulsive integral boundary value problems with one-dimensional
m-Laplacian and deviating arguments. J. Inequal. Appl. 2015, 64 (2015)
19. Guo, DJ, Sun, JX, Liu, ZL: Functional Analysis Method of Nonlinear Ordinary Differential Equations. Shandong Science
and Technology Press, Jinan (2005). ISBN:7-5331-1497-3



	Existence results for a kind of fourth-order impulsive integral boundary value problems
	Abstract
	Keywords

	Introduction
	Preliminaries and lemmas
	Main results
	Example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


