897 research outputs found

    Self-correction of 3D reconstruction from multi-view stereo images

    Get PDF
    We present a self-correction approach to improving the 3D reconstruction of a multi-view 3D photogrammetry system. The self-correction approach has been able to repair the reconstructed 3D surface damaged by depth discontinuities. Due to self-occlusion, multi-view range images have to be acquired and integrated into a watertight nonredundant mesh model in order to cover the extended surface of an imaged object. The integrated surface often suffers from “dent” artifacts produced by depth discontinuities in the multi-view range images. In this paper we propose a novel approach to correcting the 3D integrated surface such that the dent artifacts can be repaired automatically. We show examples of 3D reconstruction to demonstrate the improvement that can be achieved by the self-correction approach. This self-correction approach can be extended to integrate range images obtained from alternative range capture devices

    Applying mesh conformation on shape analysis with missing data

    Get PDF
    A mesh conformation approach that makes use of deformable generic meshes has been applied to establishing correspondences between 3D shapes with missing data. Given a group of shapes with correspondences, we can build up a statistical shape model by applying principal component analysis (PCA). The conformation at first globally maps the generic mesh to the 3D shape based on manually located corresponding landmarks, and then locally deforms the generic mesh to clone the 3D shape. The local deformation is constrained by minimizing the energy of an elastic model. An algorithm was also embedded in the conformation process to fill missing surface data of the shapes. Using synthetic data, we demonstrate that the conformation preserves the configuration of the generic mesh and hence it helps to establish good correspondences for shape analysis. Case studies of the principal component analysis of shapes were presented to illustrate the successes and advantages of our approach

    Normal families and fixed points of iterates

    Full text link
    Let F be a family of holomorphic functions and let K be a constant less than 4. Suppose that for all f in F the second iterate of f does not have fixed points for which the modulus of the multiplier is greater than K. We show that then F is normal. This is deduced from a result about the multipliers of iterated polynomials.Comment: 5 page

    Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044

    Full text link
    We investigate the frequency-dependent radio properties of the jet of the luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by means of radio interferometric observations. The observational data were obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz, supplemented by other multi-frequency observations with the Very Long Baseline Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15, and 43 GHz). The observations span a period of 7 years. We find that the luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet" morphology from the parsec to the kilo-parsec scales. The jet shows a steeper spectral index and lower brightness temperature with increasing distance from the jet core. The variation of brightness temperature agrees well with the shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic field, we estimate the mass of the central object as ~10^9 M_sun. The upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the east-west direction.Comment: 9 pages, 6 figures

    Galactic kinematics with modified Newtonian dynamics

    Full text link
    We look for observational signatures that could discriminate between Newtonian and modified Newtonian (MOND) dynamics in the Milky Way, in view of the advent of large astrometric and spectroscopic surveys. Indeed, a typical signature of MOND is an apparent disk of "phantom" dark matter, which is uniquely correlated with the visible disk-density distribution. Due to this phantom dark disk, Newtonian models with a spherical halo have different signatures from MOND models close to the Galactic plane. The models can thus be differentiated by measuring dynamically (within Newtonian dynamics) the disk surface density at the solar radius, the radial mass gradient within the disk, or the velocity ellipsoid tilt angle above the Galactic plane. Using the most realistic possible baryonic mass model for the Milky Way, we predict that, if MOND applies, the local surface density measured by a Newtonist will be approximately 78 Msun/pc2 within 1.1 kpc of the Galactic plane, the dynamically measured disk scale-length will be enhanced by a factor of 1.25 with respect to the visible disk scale-length, and the local vertical tilt of the velocity ellipsoid at 1 kpc above the plane will be approximately 6 degrees. None of these tests can be conclusive for the present-day accuracy of Milky Way data, but they will be of prime interest with the advent of large surveys such as GAIA.Comment: 5 page

    Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source

    Full text link
    On 2017 August 17, the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL telescopes detected a gamma-ray transient, GRB 170817A. 10.9 hours after the gravitational wave trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and gravitational-wave observations.Comment: 25 pages, 10 figures, 2 tables, published today in Scienc

    The Old Host-Galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational Wave Source

    Get PDF
    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.2") from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broad-band UV through IR photometry of NGC 4993. The spectrum and broad-band spectral-energy distribution indicate that NGC 4993 has a stellar mass of log (M/M_solar) = 10.49^{+0.08}_{-0.20} and star formation rate of 0.003 M_solar/yr, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude M_V > -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system.Comment: ApJL in pres

    Detections of Diffuse Interstellar Bands in the SDSS Low-resolution Spectra

    Full text link
    Diffuse interstellar bands (DIBs) have been discovered for almost a century, but their nature remains one of the most challenging problems in astronomical spectroscopy. Most recent work to identify and investigate the properties and carriers of DIBs concentrates on high-resolution spectroscopy of selected sight-lines. In this paper, we report detections of DIBs in the Sloan Digital Sky Survey (SDSS) low-resolution spectra of a large sample of Galactic stars. Using a template subtraction method, we have successfully identified the DIBs λ\lambdaλ\lambda5780, 6283 in the SDSS spectra of a sample of about 2,000 stars and measured their strengths and radial velocities. The sample is by far the largest ever assembled. The targets span a large range of reddening, E(B-V) ~ 0.2 -- 1.0, and are distributed over a large sky area and involve a wide range of stellar parameters (effective temperature, surface gravity and metallicity), confirming that the carriers of DIBs are ubiquitous in the diffuse interstellar medium (ISM). The sample is used to investigate relations between strengths of DIBs and magnitudes of line-of-sight extinction, yielding results (i.e., EW(5780)= 0.61 x E(B-V) and EW(6283) = 1.26 x E(B-V)) consistent with previous studies. DIB features have also been detected in the commissioning spectra of the Guoshoujing Telescope (LAMOST) of resolving power similar to that of SDSS. Detections of DIBs towards hundreds of thousands of stars are expected from the on-going and up-coming large scale spectroscopic surveys such as RAVE, SDSS III and LAMOST, particularly from the LAMOST Digital Sky Survey of the Galactic Anti-center (DSS-GAC). Such a huge database will provide an unprecedented opportunity to study the demographical distribution and nature of DIBs as well as using DIBs to probe the distribution and properties of the ISM and the dust extinction.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc
    • 

    corecore