2,936 research outputs found

    Modeling the RV jitter of early M dwarfs using tomographic imaging

    Full text link
    In this paper we show how tomographic imaging (Zeeman Doppler Imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing to filter out the radial velocity (RV) activity jitter of M-dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly-active early M-dwarfs (GJ 205, GJ 358, GJ 410, GJ479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin i and RV jitters in the range 1-2 km/s and 2.7-10.0 m/s rms respectively. Using a modified version of ZDI applied to sets of phase-resolved Least-Squares- Decon- volved (LSD) profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that darks spots cover less than 2% of the total surface of the stars of our sample. Our technique is e cient at modeling the rotationally mod- ulated component of the activity jitter, and succeeds at decreasing the amplitude of this com- ponent by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time-series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bi-stability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.Comment: 34 pages, accepted for publication in MNRA

    Des antagonismes exacerbés par le changement climatique et des solutions à inventer

    Get PDF
    Abritant une très forte biodiversité, parmi les plus riches de France métropolitaine, et concentrant de multiples enjeux sociétaux, relevant aussi bien de production que de loisirs, tout en étant imprégnée d’une longue histoire d’impacts humains, les forêts méditerranéennes constituent un parfait exemple actuel de milieux devant faire face à de nombreux défis écologiques. En effet, comment concilier conservation d’une biodiversité de plus en plus menacée et demande sociétale pour davantage de naturalité d’un côté, et une pression anthropique toujours plus forte pour satisfaire des besoins économiques sans cesse accrus de l’autre ? De plus, ces questions sont actuellement exacerbées par le contexte de changement climatique, puisque les forêts méditerranéennes y sont particulièrement sensibles. En effet le réchauffement et l’augmentation de l’intensité et de la fréquence des épisodes de sécheresse affectent directement les processus écosystémiques liés aux forêts et les services qui en découlent, mais influent également indirectement sur les écosystèmes forestiers en modifiant leur biodiversité. Ce rôle de la diversité dans le fonctionnement des écosystèmes forestiers méditerranéens pourrait constituer la clé de voûte d’une conciliation des nombreux défis posés, qui de toute façon ne peut passer que par des compromis, et des solutions à inventer

    Large-scale magnetic topologies of late M dwarfs

    Full text link
    We present here the final results of the first spectropolarimetric survey of a small sample of active M dwarfs, aimed at providing observational constraints on dynamo action on both sides of the full-convection threshold (spectral type M4). Our two previous studies (Donati et al. 2008b; Morin et al. 2008b) were focused on early and mid M dwarfs. The present paper examines 11 fully convective late M dwarfs (spectral types M5-M8). Tomographic imaging techniques were applied to time-series of circularly polarised profiles of 6 stars, in order to infer their large-scale magnetic topologies. For 3 other stars we could not produce such magnetic maps, because of low variability of the Stokes V signatures, but were able to derive some properties of the magnetic fields. We find 2 distinct categories of magnetic topologies: on the one hand strong axisymmetric dipolar fields (similar to mid M dwarfs), and on the other hand weak fields generally featuring a significant non-axisymmetric component, and sometimes a significant toroidal one. Comparison with unsigned magnetic fluxes demonstrates that the second category of magnetic fields shows less organization (less energy in the large scales), similarly to partly convective early M dwarfs. Stars in both categories have similar stellar parameters, our data do not evidence a separation between these 2 categories in the mass-rotation plane. We also report marginal detection of a large-scale magnetic field on the M8 star VB 10 featuring a significant toroidal axisymmetric component, whereas no field is detectable on VB 8 (M7).Comment: 26 pages, 16 figures, 9 tables, 11 tables in appendix. Accepted for publication in MNRA

    A polynomial bound for untangling geometric planar graphs

    Get PDF
    To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos [Discrete Comput. Geom., 2002] asked if every n-vertex geometric planar graph can be untangled while keeping at least n^\epsilon vertices fixed. We answer this question in the affirmative with \epsilon=1/4. The previous best known bound was \Omega((\log n / \log\log n)^{1/2}). We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least (n/3)^{1/2} vertices fixed, while the best upper bound was O(n\log n)^{2/3}. We answer a question of Spillner and Wolff [arXiv:0709.0170 2007] by closing this gap for untangling trees. In particular, we show that for infinitely many values of n, there is an n-vertex geometric tree that cannot be untangled while keeping more than 3(n^{1/2}-1) vertices fixed. Moreover, we improve the lower bound to (n/2)^{1/2}.Comment: 14 pages, 7 figure

    Magnetic topologies of cool stars

    Get PDF
    Stellar magnetic fields can be investigated using several, very complementary approaches. While conventional spectroscopy is capable of estimating the average magnetic strength of potentially complex field configurations thanks to its low sensitivity to the vector properties of the field, spectropolarimetry can be used to map the medium- and large-scale structure of magnetic topologies. In particular, the latter approach allows one to retrieve information about the poloidal and toroidal components of the large-scale dynamo fields in low-mass stars, and thus to investigate the physical processes that produce them. Similarly, this technique can be used to explore how magnetic fields couple young stars to their massive accretion disc and thus to estimate how much mass and angular momentum are transfered to the newly-born low-mass star. We present here the latest results in this field obtained with spectropolarimetry, with special emphasis on the surprising discoveries obtained on very-low mass fully-convective stars and classical T Tauri stars thanks to the ESPaDOnS spectropolarimeter recently installed on the 3.6m Canada-France-Hawaii Telescope.Comment: 10p invited review paper, 3 figures, to be published in the proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, November 6-10, 2006, ed. G. van Belle (ASP Conf Ser

    World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT

    Full text link
    SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as a new-generation instrument for CFHT. SPIRou aims in particular at becoming world-leader on two forefront science topics, (i) the quest for habitable Earth-like planets around very- low-mass stars, and (ii) the study of low-mass star and planet formation in the presence of magnetic fields. In addition to these two main goals, SPIRou will be able to tackle many key programs, from weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo processes in fully-convective bodies and planet habitability. The science programs that SPIRou proposes to tackle are forefront (identified as first priorities by most research agencies worldwide), ambitious (competitive and complementary with science programs carried out on much larger facilities, such as ALMA and JWST) and timely (ideally phased with complementary space missions like TESS and CHEOPS). SPIRou is designed to carry out its science mission with maximum efficiency and optimum precision. More specifically, SPIRou will be able to cover a very wide single-shot nIR spectral domain (0.98-2.35 \mu m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars with a ~15% average throughput and a radial velocity (RV) precision of 1 m/s.Comment: 12 pages, 5 figures, conference proceedings of the French Society of Astronomy and Astrophysics meeting 201
    • …
    corecore