2,936 research outputs found
Recommended from our members
Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside. © 2005 Elsevier Ltd. All rights reserved
Modeling the RV jitter of early M dwarfs using tomographic imaging
In this paper we show how tomographic imaging (Zeeman Doppler Imaging, ZDI)
can be used to characterize stellar activity and magnetic field topologies,
ultimately allowing to filter out the radial velocity (RV) activity jitter of
M-dwarf moderate rotators. This work is based on spectropolarimetric
observations of a sample of five weakly-active early M-dwarfs (GJ 205, GJ 358,
GJ 410, GJ479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin i and
RV jitters in the range 1-2 km/s and 2.7-10.0 m/s rms respectively. Using a
modified version of ZDI applied to sets of phase-resolved Least-Squares- Decon-
volved (LSD) profiles of unpolarized spectral lines, we are able to
characterize the distribution of active regions at the stellar surfaces. We
find that darks spots cover less than 2% of the total surface of the stars of
our sample. Our technique is e cient at modeling the rotationally mod- ulated
component of the activity jitter, and succeeds at decreasing the amplitude of
this com- ponent by typical factors of 2-3 and up to 6 in optimal cases. From
the rotationally modulated time-series of circularly polarized spectra and with
ZDI, we also reconstruct the large-scale magnetic field topology. These fields
suggest that bi-stability of dynamo processes observed in active M dwarfs may
also be at work for moderately active M dwarfs. Comparing spot distributions
with field topologies suggest that dark spots causing activity jitter
concentrate at the magnetic pole and/or equator, to be confirmed with future
data on a larger sample.Comment: 34 pages, accepted for publication in MNRA
Des antagonismes exacerbés par le changement climatique et des solutions à inventer
Abritant une très forte biodiversité, parmi les plus riches de France métropolitaine, et concentrant de multiples enjeux sociétaux, relevant aussi bien de production que de loisirs, tout en étant imprégnée d’une longue histoire d’impacts humains, les forêts méditerranéennes constituent un parfait exemple actuel de milieux devant faire face à de nombreux défis écologiques. En effet, comment concilier conservation d’une biodiversité de plus en plus menacée et demande sociétale pour davantage de naturalité d’un côté, et une pression anthropique toujours plus forte pour satisfaire des besoins économiques sans cesse accrus de l’autre ? De plus, ces questions sont actuellement exacerbées par le contexte de changement climatique, puisque les forêts méditerranéennes y sont particulièrement sensibles. En effet le réchauffement et l’augmentation de l’intensité et de la fréquence des épisodes de sécheresse affectent directement les processus écosystémiques liés aux forêts et les services qui en découlent, mais influent également indirectement sur les écosystèmes forestiers en modifiant leur biodiversité. Ce rôle de la diversité dans le fonctionnement des écosystèmes forestiers méditerranéens pourrait constituer la clé de voûte d’une conciliation des nombreux défis posés, qui de toute façon ne peut passer que par des compromis, et des solutions à inventer
Large-scale magnetic topologies of late M dwarfs
We present here the final results of the first spectropolarimetric survey of
a small sample of active M dwarfs, aimed at providing observational constraints
on dynamo action on both sides of the full-convection threshold (spectral type
M4). Our two previous studies (Donati et al. 2008b; Morin et al. 2008b) were
focused on early and mid M dwarfs. The present paper examines 11 fully
convective late M dwarfs (spectral types M5-M8). Tomographic imaging techniques
were applied to time-series of circularly polarised profiles of 6 stars, in
order to infer their large-scale magnetic topologies. For 3 other stars we
could not produce such magnetic maps, because of low variability of the Stokes
V signatures, but were able to derive some properties of the magnetic fields.
We find 2 distinct categories of magnetic topologies: on the one hand strong
axisymmetric dipolar fields (similar to mid M dwarfs), and on the other hand
weak fields generally featuring a significant non-axisymmetric component, and
sometimes a significant toroidal one. Comparison with unsigned magnetic fluxes
demonstrates that the second category of magnetic fields shows less
organization (less energy in the large scales), similarly to partly convective
early M dwarfs. Stars in both categories have similar stellar parameters, our
data do not evidence a separation between these 2 categories in the
mass-rotation plane. We also report marginal detection of a large-scale
magnetic field on the M8 star VB 10 featuring a significant toroidal
axisymmetric component, whereas no field is detectable on VB 8 (M7).Comment: 26 pages, 16 figures, 9 tables, 11 tables in appendix. Accepted for
publication in MNRA
A polynomial bound for untangling geometric planar graphs
To untangle a geometric graph means to move some of the vertices so that the
resulting geometric graph has no crossings. Pach and Tardos [Discrete Comput.
Geom., 2002] asked if every n-vertex geometric planar graph can be untangled
while keeping at least n^\epsilon vertices fixed. We answer this question in
the affirmative with \epsilon=1/4. The previous best known bound was
\Omega((\log n / \log\log n)^{1/2}). We also consider untangling geometric
trees. It is known that every n-vertex geometric tree can be untangled while
keeping at least (n/3)^{1/2} vertices fixed, while the best upper bound was
O(n\log n)^{2/3}. We answer a question of Spillner and Wolff [arXiv:0709.0170
2007] by closing this gap for untangling trees. In particular, we show that for
infinitely many values of n, there is an n-vertex geometric tree that cannot be
untangled while keeping more than 3(n^{1/2}-1) vertices fixed. Moreover, we
improve the lower bound to (n/2)^{1/2}.Comment: 14 pages, 7 figure
Magnetic topologies of cool stars
Stellar magnetic fields can be investigated using several, very complementary
approaches. While conventional spectroscopy is capable of estimating the
average magnetic strength of potentially complex field configurations thanks to
its low sensitivity to the vector properties of the field, spectropolarimetry
can be used to map the medium- and large-scale structure of magnetic
topologies. In particular, the latter approach allows one to retrieve
information about the poloidal and toroidal components of the large-scale
dynamo fields in low-mass stars, and thus to investigate the physical processes
that produce them. Similarly, this technique can be used to explore how
magnetic fields couple young stars to their massive accretion disc and thus to
estimate how much mass and angular momentum are transfered to the newly-born
low-mass star. We present here the latest results in this field obtained with
spectropolarimetry, with special emphasis on the surprising discoveries
obtained on very-low mass fully-convective stars and classical T Tauri stars
thanks to the ESPaDOnS spectropolarimeter recently installed on the 3.6m
Canada-France-Hawaii Telescope.Comment: 10p invited review paper, 3 figures, to be published in the
proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems,
and the Sun, November 6-10, 2006, ed. G. van Belle (ASP Conf Ser
World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as
a new-generation instrument for CFHT. SPIRou aims in particular at becoming
world-leader on two forefront science topics, (i) the quest for habitable
Earth-like planets around very- low-mass stars, and (ii) the study of low-mass
star and planet formation in the presence of magnetic fields. In addition to
these two main goals, SPIRou will be able to tackle many key programs, from
weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo
processes in fully-convective bodies and planet habitability. The science
programs that SPIRou proposes to tackle are forefront (identified as first
priorities by most research agencies worldwide), ambitious (competitive and
complementary with science programs carried out on much larger facilities, such
as ALMA and JWST) and timely (ideally phased with complementary space missions
like TESS and CHEOPS).
SPIRou is designed to carry out its science mission with maximum efficiency
and optimum precision. More specifically, SPIRou will be able to cover a very
wide single-shot nIR spectral domain (0.98-2.35 \mu m) at a resolving power of
73.5K, providing unpolarized and polarized spectra of low-mass stars with a
~15% average throughput and a radial velocity (RV) precision of 1 m/s.Comment: 12 pages, 5 figures, conference proceedings of the French Society of
Astronomy and Astrophysics meeting 201
- …