55 research outputs found
Separation of n-hexane - ethyl acetate mixture by azeotropic batch distillation with heterogeneous entrainers
In this article, a systematic study of the separation of the n-hexane - ethyl acetate mixture with an entrainer by heterogeneous azeotropic batch distillation is performed. Based upon the thermodynamic behaviour of the ternary mixtures, potential entrainers partially miscible with one or two original azeotropic components are chosen. In all cases, the entrainer adds a heterogeneous binary or ternary azeotrope that is the lowest boiling point in the ternary diagram. Therefore, it leaves the column by the overhead stream which is subcooled to get two liquid phases in the decanter. The phase with the highest amount of the original component is removed as distillate product whereas the entrainer â rich phase is continuously refluxed to the column. Considering methanol, acetonitrile, water and nitromethane as heterogeneous entrainers, screening was performed based on the composition of the unstable heteroazeotropic mixture, the ratio of both liquid phases in the condensed top vapour and the purity of the distillate product determined by the liquid â liquid envelope at the decanter temperature. The process feasibility analysis is validated by using rigorous simulation with the batch process simulator ProSimBatch. Simulation results are then corroborated in a bench experimental column for the selected entrainer, showing several advantages of heterogeneous batch distillation compared to homogeneous systems
Vapour reactive distillation process for hydrogen production by hi decomposition from hi-i2-h2o solutions
In this contribution, a sequential and hierarchical approach for the feasibility analysis and the preliminary design of reactive distillation columns is extended to systems involving vapour phase chemical reaction and is successfully applied to the HI vapour phase decomposition to produce H2.
The complex phase and physico chemical behaviour of the quaternary HI-H2-I2-H2O system is represented by the Neumannâs thermodynamic model and instantaneous vapour phase chemical equilibrium is assumed.
Then, from minimal information concerning the physicochemical properties of the system, three successive steps lead to the design of the unit and the specification of its operating conditions: the feasibility analysis, the synthesis and the design step. First, the analysis of reactive condensation curve map method (rCCM), assuming infinite internal liquid and vapour flow rate and infinite reflux ratio, is used to assess the feasibility of the process. It determines the column structure and estimates the attainable compositions. These results are used as inputs data for the synthesis step. Based on the boundary value design method (BVD), considering finite internal liquid and vapour flow rate and finite reflux ratio while neglecting all thermal effects and assuming a constant heat of vaporisation, the synthesis step provides more precise information about the process configuration (minimum reflux ratio, number of theoretical stages, localisation and number of reactive plates, position of the feed plate). Finally, the BVD method results are used to initialise rigorous simulations, based on an equilibrium stage model with energy balance, to estimate the reflux ratio taking into account thermal effect on the process.
The resulting design configuration consists in a single feed and entirely reactive distillation column. The column operates under a pressure of 22 bars. The feed of the reactive distillation column, coming from the Bunsen reaction section [xHI=0.10; xI2=0.39 xH2O=0.51], is at its boiling temperature. The residue consists in pure iodine. Water and produced hydrogen are recovered at the distillate. The column operates at a reflux ratio of 5 and is composed of 11 theoretical plates including the reboiler and the partial condenser with the feed at the stage 10 (counted downwards). The obtained HI dissociation yield is 99.6%
Preliminary Design of Reactive Distillation Columns
A procedure that combines feasibility analysis, synthesis and design of reactive distillation columns is introduced. The main interest of this methodology lies on a progressive
introduction of the process complexity. From minimal information concerning the physicochemical properties of the system, three steps lead to the design of
the unit and the specification of its operating conditions. Most of the methodology exploits and enriches approaches found in the literature. Each step is described and our contribution is underlined. Its application is currently limited to equilibrium reactive systems where degree of freedom is equal to 2 or less than 2. This methodology which provides a reliable initialization point for the optimization of the process has been applied with success to
different synthesis. The production of methyl-tert-butyl-ether (MTBE) and methyl acetate are presented as examples
Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors
The evolutionarily conserved Hox family of homeodomain transcription factors
plays fundamental roles in regulating cell specification along the anterior
posterior axis during development of all bilaterian animals by controlling cell
fate choices in a highly localized, extracellular signal and cell context
dependent manner. Some studies have established downstream target genes in
specific systems but their identification is insufficient to explain either the
ability of Hox genes to direct homeotic transformations or the
breadth of their patterning potential. To begin delineating Hox
gene function in neural development we used a mouse ES cell based system that
combines efficient neural differentiation with inducible Hoxb1 expression. Gene
expression profiling suggested that Hoxb1 acted as both
activator and repressor in the short term but predominantly as a repressor in
the long run. Activated and repressed genes segregated in distinct processes
suggesting that, in the context examined, Hoxb1 blocked
differentiation while activating genes related to early developmental processes,
wnt and cell surface receptor linked signal transduction and cell-to-cell
communication. To further elucidate aspects of Hoxb1 function
we used loss and gain of function approaches in the mouse and chick embryos. We
show that Hoxb1 acts as an activator to establish the full expression domain of
CRABPI and II in rhombomere 4 and as a
repressor to restrict expression of Lhx5 and
Lhx9. Thus the Hoxb1 patterning activity
includes the regulation of the cellular response to retinoic acid and the delay
of the expression of genes that commit cells to neural differentiation. The
results of this study show that ES neural differentiation and inducible
Hox gene expression can be used as a sensitive model system
to systematically identify Hox novel target genes, delineate
their interactions with signaling pathways in dictating cell fate and define the
extent of functional overlap among different Hox genes
Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis.
BACKGROUND: Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues.
RESULTS: Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity.
CONCLUSIONS: Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis
Uncertain Operating Conditions Implications on Multistage Operations Optimal Design and Environmental Impact
Energy demand is increasingly the most relevant cost item in chemical plants. Operating expenses indeed play a main role in all plants processing large amounts of feedstock via well-established processes in the petrochemical industry. In staged operations, the optimal number of stages is usually obtained by means of an economic optimization. However, the designed equipment, external duties, and thus operating expenses may considerably vary under the effect of external disturbances. The main purpose of this paper is to outline a simple but effective procedure to account for perturbations in the assessment of the optimal number of stages. The analysis shows that appropriate investments could lead to a unit design able to mitigate the higher duty requirements when external perturbations occur. The results highlight that the optimal number of stages varies when uncertainty is consid-ered and, with low computational effort, this can be effectively quantified by means of the applied methodology. Furthermore, the same approach has been applied to sustainability indicators over the uncertain domain as well. In those cases, when more stages correspond to more flexible equipment, the environmental impact is positively affected, and a double benefit can be observed
OO Concepts for Process Modelling and Simulation
International audienceAn object-oriented (OO) modelling approach which associates a detailed representation of the process structure and of the transformations that the material in the structure undergoes is presented through the illustrative example of a reactor. The structural decomposition of the process devices gives rise to the concepts of elementary devices and ports. The associated elementary model results from combining this structural decomposition with a material object and a set of hypotheses. The complete process model is then generated by aggregation of the available elementary models. By defining models on the level of technological components smaller than the classical unit operations, this modelling approach aims to meet the challenge of the model adaptability to process diversity and complexity. Implementation of this modelling is greatly facilitated by new computer technology and tools, and notably the methods and languages associated with object-oriented analysis and design
OO Concepts for Process Modelling and Simulation
An object-oriented (OO) modelling approach which associates a detailed representation of the process structure and of the transformations that the material in the structure undergoes is presented through the illustrative example of a reactor. The structural decomposition of the process devices gives rise to the concepts of elementary devices and ports. The associated elementary model results from combining this structural decomposition with a material object and a set of hypotheses. The complete process model is then generated by aggregation of the available elementary models. By defining models on the level of technological components smaller than the classical unit operations, this modelling approach aims to meet the challenge of the model adaptability to process diversity and complexity. Implementation of this modelling is greatly facilitated by new computer technology and tools, and notably the methods and languages associated with object-oriented analysis and design
- âŠ