105 research outputs found

    Detection of phloem restricted bacteria responsible for strawberry marginal chlorosis (SMC) by real-time PCR in a single assay

    Get PDF
    Two uncultured phloem restricted plant pathogens, the γ3 proteobacterium «Candidatus Phlomobacter fragariae » and the stolbur phytoplasma (group 16SrXII-A) are associated with strawberry marginal chlorosis (SMC) in France. As “Ca. P. fragariae” and stolbur phytoplasma induce identical symptoms, the only way to identify the pathogen infecting a given diseased plant is to perform conventional PCR assays. Because using two PCR techniques for detecting separately each of the two bacteria is time consuming and because specificity and sensitivity of the detection test needed to be improved, a new approach using triplex real time PCR was developed for the routine detection of “Ca. P. fragariae “ and stolbur phytoplasma. The real time PCR has the advantage of being faster reduces the risks of producing false positives. Furthermore, real-time PCR techniques provide the possibility of multiplexing by using probes with different compatible fluorescent dyes. Here, we present a new sensitive Taqman® method which permits the simultaneous amplification of three DNA targets in one test: the map gene of stolbur phytoplasma, the spoT gene of “Ca. P. fragariae” and the cox gene of strawberry chloroplast taken as an internal control. The specificity and the efficiency of this method were determined.Keywords: Strawberry Marginal Chlorosis, Triplex taqman® PCR ,Candidatus Phlomobacter fragariae, stolbur phytoplasma

    PCR/RFLP-based method for molecular characterization of ‘Candidatus Phytoplasma prunorum’ strains using the aceF gene.

    Get PDF
    New molecular typing tools for phytoplasmas belonging to the 16SrX phytoplasma group have recently been developed based on the non-ribosomal genes aceF, pnp, imp, and SecY. In the present work we chose to perform a PCR-RFLP method based on the aceF gene. This genetic marker had previously shown high variability among strains of the 16SrX group, moreover, it had allowed for the differentiation of French hypovirulent ‘Candidatus Phytoplasma prunorum’ strains from virulent ones.Most of the stone fruit samples were collected in north-east Italy, although a few samples from Bosnia and Herzegovina, and Turkey were also included in the work to explore variability. French hypovirulent and virulent strains, one Azerbaijan strain and ‘Ca. P. prunorum’ strains maintained in periwinkles were used as reference strains. Some of the Italian samples were not collected in the field and they became infected by Cacopsylla pruni under controlled conditions.Sequencing of the aceF gene was performed on some of the samples tested and based on the alignment, a few restriction enzymes were selected for ‘Ca. P. prunorum’ strain differentiation. Nested PCR was performed using previously developed primers on all samples and RFLP analyses were carried out with BpiI, HaeIII and Tsp509I enzymes. BpiI and HaeIII enzymes generated two different profiles, one profile was undigested and the second one constituted by two different fragments. The Tsp509I enzyme enabled three different pattern types to be distinguished. Combining the results obtained with the three restriction enzymes, it was possible to distinguish between the ‘Ca. P. prunorum’ strains investigated in this study: 6 different RFLP subgroups AceF-A, -B, -C, -D, -E and –F. We confirmed that strains belonging to 4 subgroups, AceF-A, -B, -C and -E were present in north-east Italy, where a large number of the samples were processed. The strains of AceF-A and -E subgroups were the predominant ones (21.6% and 17.0%, respectively) and mixed infections of AceF-A+E subgroups (17.0%), and AceF-B+E (14.8%) subgroups were quite common. Keywords: phytoplasma, European stone fruit yellows, molecular differentiation, sequencin

    When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe

    Get PDF
    Flavescence dorée (FD) is a European quarantine grapevine disease transmitted by the Deltocephalinae leafhopper Scaphoideus titanus. Whereas this vector had been introduced from North America, the possible European origin of FD phytoplasma needed to be challenged and correlated with ecological and genetic drivers of FD emergence. For that purpose, a survey of genetic diversity of these phytoplasmas in grapevines, S. titanus, black alders, alder leafhoppers and clematis were conducted in five European countries. Out of 132 map genotypes, only 11 were associated to FD outbreaks, three were detected in clematis, whereas 127 were detected in alder trees, alder leafhoppers or in grapevines out of FD outbreaks. Most of the alder trees were found infected, including 8% with FD genotypes M6, M38 and M50, also present in alders neighboring FD-free vineyards and vineyard-free areas. The Macropsinae Oncopsis alni could transmit genotypes unable to achieve transmission by S. titanus, while the Deltocephalinae Allygus spp. and Orientus ishidae transmitted M38 and M50 that proved to be compatible with S. titanus. Variability of vmpA and vmpB adhesin-like genes clearly discriminated 3 genetic clusters. Cluster Vmp-I grouped genotypes only transmitted by O. alni, while clusters Vmp-II and -III grouped genotypes transmitted by Deltocephalinae leafhoppers. Interestingly, adhesin repeated domains evolved independently in cluster Vmp-I, whereas in clusters Vmp-II and-III showed recent duplications. Latex beads coated with various ratio of VmpA of clusters II and I, showed that cluster II VmpA promoted enhanced adhesion to the Deltocephalinae Euscelidius variegatus epithelial cells and were better retained in both E. variegatus and S. titanus midguts. Our data demonstrate that most FD phytoplasmas are endemic to European alders. Their emergence as grapevine epidemic pathogens appeared restricted to some genetic variants pre-existing in alders, whose compatibility to S. titanus correlates with different vmp gene sequences and VmpA binding properties

    Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    Get PDF
    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network

    The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

    Get PDF
    Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity

    Risk to plant health of Flavescence doree for the EU territory

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Plant Health (PLH) performed a quantitative analysis of the risk posed by the Flavescence dor\ue9e phytoplasma (FDp) in the EU territory. Three scenarios were analysed, one with current measures in place (scenario A0), one designed to improve grapevine propagation material phytosanitary status (scenario A1) and one with reinforced eradication and containment (scenario A2). The potential for entry is limited, FDp being almost non-existent outside the EU. FDp and its major vector, Scaphoideus titanus, have already established over large parts of the EU and have the potential to establish in a large fraction of the currently unaffected EU territory. With the current measures in place (A0), spread of FDp is predicted to continue with a progression of between a few and ca 20 newly infested NUTS 2 regions during the next 10 years, illustrating the limitations of the current control measures against spread. FDp spread is predicted to be roughly similar between scenarios A1 and A2, but more restricted than under scenario A0. However, even with reinforced control scenarios, stabilisation or reduction in the number of infested NUTS 2 regions has only relatively low probability. Under scenario A0, FDp has a 0.5\u20131% impact on the overall EU grapes and wine production, reflecting the effectiveness of the current control measures against impact. Under both scenarios A1 and A2, FDp impact is predicted to be reduced, by approximately one-third (A1) to two-thirds (A2) as compared to A0, but the associated uncertainties are large. The generalised use of hot water treatment for planting material produced in infected zones has the most important contribution to FDp impact reduction in scenario A1 and has high feasibility. Both increased eradication and containment measures contribute to impact reduction under scenario A2 but the overall feasibility is lower
    corecore