10 research outputs found

    Economic Importance of Managing Spatially Heterogeneous Weed Population

    Get PDF
    Three methods of predicting the impact of weed interference on crop yield and expected economic return were compared to evaluate the economic importance of weed spatial heterogeneity. Density of three weed species was obtained using a grid sampling scheme in 11 corn and 11 soybean fields. Crop yield loss was predicted assuming densities were homogeneous, aggregated following a negative binomial with known population mean and k, or aggregated with weed densities spatially mapped. Predicted crop loss was lowest and expected returns highest when spatial location of weed density was utilized to decide whether control was justified. Location-specific weed management resulted in economic gain as well as a reduction in the quantity of herbicide applied

    Economic Importance of Managing Spatially Heterogeneous Weed Population

    Get PDF
    Three methods of predicting the impact of weed interference on crop yield and expected economic return were compared to evaluate the economic importance of weed spatial heterogeneity. Density of three weed species was obtained using a grid sampling scheme in 11 corn and 11 soybean fields. Crop yield loss was predicted assuming densities were homogeneous, aggregated following a negative binomial with known population mean and k, or aggregated with weed densities spatially mapped. Predicted crop loss was lowest and expected returns highest when spatial location of weed density was utilized to decide whether control was justified. Location-specific weed management resulted in economic gain as well as a reduction in the quantity of herbicide applied

    Weeds, worms and geostatistics

    No full text
    Weeds and plant-parasitic nematodes occur in patches in agricultural fields. Farmers can control them with chemicals. They can do so precisely and prevent competition (from weeds) and predation (by nematodes) provided they know where the pests are early in the lives of their crops or before sowing or planting them. Standard geostatistical methods have been used successfully to analyse counts of both weed seedlings and nematodes in the soil and to map their distributions from kriged estimates. The application is technologically sound. The most serious obstacle to its application in farming is that sampling must be intense, with spacings between sampling points of 20–40 m. This means that the cost of sampling and counting the pests is greater than the savings from not applying herbicides or nematicides. Only for potatoes is the effort and cost of estimating the burdens of the parasitic cyst nematodes of the genusGlobodera justified economically. For precise control of weeds proximal sensing at the seedling stage seems more promising

    Comparison of visible imaging, thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on sugar beets

    No full text
    Abstract Background Phenotyping technologies are expected to provide predictive power for a range of applications in plant and crop sciences. Here, we use the disease pressure of Beet Cyst Nematodes (BCN) on sugar beet as an illustrative example to test the specific capabilities of different methods. Strong links between the above and belowground parts of sugar beet plants have made BCN suitable targets for use of non-destructive phenotyping methods. We compared the ability of visible light imaging, thermography and spectrometry to evaluate the effect of BCN on the growth of sugar beet plants. Results Two microplot experiments were sown with the nematode susceptible cultivar Aimanta and the nematode tolerant cultivar BlueFox under semi-field conditions. Visible imaging, thermal imaging and spectrometry were carried out on BCN infested and non-infested plants at different times during the plant development. Effects of a chemical nematicide were also evaluated using the three phenotyping methods. Leaf and beet biomass were measured at harvest. For both susceptible and tolerant cultivar, canopy area extracted from visible images was the earliest nematode stress indicator. Using such canopy area parameter, delay in leaf growth as well as benefit from a chemical nematicide could be detected already 15 days after sowing. Spectrometry was suitable to identify the stress even when the canopy reached full coverage. Thermography could only detect stress on the susceptible cultivar. Spectral Vegetation Indices related to canopy cover (NDVI and MCARI2) and chlorophyll content (CHLG) were correlated with the final yield (R = 0.69 on average for the susceptible cultivar) and the final nematode population in the soil (R = 0.78 on average for the susceptible cultivar). Conclusion In this paper we compare the use of visible imaging, thermography and spectrometry over two cultivars and 2 years under outdoor conditions. The three different techniques have their specific strengths in identifying BCN symptoms according to the type of cultivars and the growth stages of the sugar beet plants. Early detection of nematicide benefit and high yield predictability using visible imaging and spectrometry suggests promising applications for agricultural research and precision agriculture
    corecore