123 research outputs found

    Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records

    Get PDF
    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel “on-line” method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics

    Sulphate concentration in cave dripwater and speleothems:long-term trends and overview of its significance as proxy for environmental processes and climate changes

    Get PDF
    Sulphate concentrations in speleothems identify major volcanic eruptions, provide useful information on soil and aquifer dynamics and, in similar fashion to the 14C bomb peak, its Anthropocene peak can be used to date recent cave formations. However, the transmission of S from the atmosphere to cave dripwater and its incorporation in speleothems is subjected to biogeochemical cycling and accurate studies of each cave site are needed in order to assess how the S atmospheric signal is modified and eventually encoded in speleothems. This study investigates the role of biogeochemical cycling and aquifer hydrology by utilising published and new dripwater and speleothem data from Grotta di Ernesto (ER) in northern Italy. Here we provide the first long-term record of sulphate concentration in cave dripwater based on over 20 years of measurements. Fast drip site st-ER1 is characterised by a continuous decrease in SO4 concentration from a high of 7.5 ± 0.8 mg/l in 1993–1994 to a low of 2.2 ± 0.2 mg/l in 2013–2014, and replicates with a delay of ∼15 years the decline in the atmospheric SO2 emissions. The S-series of slow flow ER78 site is further delayed by ∼4.5 years in relation to the S retention in the aquifer matrix. The dripwater data are used to extend the previously published S record (1810–1998 AD) of stalagmite ER78 and reconstruct the anthropogenic S-peak: this displays a delay of ∼20 years with respect to the atmospheric S emission peak due to biogeochemical cycling and aquifer storage. However, sulphur recycling above the cave did not operate with the same degree of efficiency through time, which resulted in a variable time delay between S deposition and incorporation into the stalagmite. In the pre-Anthropocene era, and in particular during the cold Little Ice Age, biogeochemical cycling was far less efficient than today, and the fast transmission of the atmospheric signal allowed capture of S released during major volcanic eruptions by stalagmites

    Roles of forest bioproductivity, transpiration and fire in a nine-year record of cave dripwater chemistry from southwest Australia

    Get PDF
    Forest biomass has the potential to significantly impact the chemistry and volume of diffuse recharge to cave dripwater via the processes of nutrient uptake, transpiration and forest fire. Yet to-date, this role has been under-appreciated in the interpretation of speleothem trace element records from forested catchments. In this study, the impact of vegetation is examined and quantified in a long-term monitoring program from Golgotha Cave, SW Australia. The contribution of salts from rain and dry-deposition of aerosols and dissolved elements from soil mineral and bedrock dissolution to dripwater chemistry are also examined. This study is an essential pre-requisite for the future interpretation of trace element data from SW Australian stalagmite records, whose record of past environmental change will include alterations in these biogeochemical fluxes. Solute concentrations in dripwater vary spatially, supporting the existence of distinct flow paths governed by varying amounts of transpiration as well as nutrient uptake by deeply-rooted biomass. Applying principal components analysis, we identify a common pattern of variation in dripwater Cl, Mg, K, Ca, Sr and Si, interpreted as reflecting increasing transpiration, due to forest growth. Mass-balance calculations show that increasing elemental sequestration into biomass has the largest impact on SO4, providing an explanation for the overall falling dripwater SO4 concentrations through time, in contrast to the transpiration-driven rising trend dominating other ions. The long-term rise in transpiration and nutrient uptake driven by increased forest bioproductivity and its impact on our dripwater chemistry is attributed to i. the post-fire recovery of the forest understorey after fire impacted the site in 2006 CE; ii. and/or increased water and nutrient demand as trees in the overlying forest mature. The impact of climate-driven changes on the water balance is also examined. Finally, the implications for interpreting SW Australian speleothem trace element records are discussed

    Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution

    Get PDF
    The Himalaya has a major influence on global and regional climate, in particular on the Asian monsoon system. The foreland basin of the Himalaya contains a record of tectonics and paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has focused on the central and western Himalaya, where a shift from C3 to C4 vegetation has been observed at ∼7 Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen is less well understood. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed δ13Cδ13C and δ18Oδ18O values of soil carbonate and associated δ13Cδ13C values of bulk organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), respectively. The presence of soil carbonate in the west and its absence in the east is a first indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions to develop. δ13Cδ13C values in soil carbonate show a shift from around −10‰ to −2‰ at ∼7 Ma in the west, which is confirmed by δ13Cδ13C analyses on bulk organic carbon that show a shift from around −23‰ to −19‰ at the same time. Such a shift in isotopic values is likely to be associated with a change from C3 to C4 vegetation. In contrast, δ13Cδ13C values of bulk organic carbon remain at ∼−23‰∼−23‰ in the east. Thus, our data show that the current east–west variation in climate was established at 7 Ma. We propose that the regional change towards a more seasonal climate in the west is linked to a decrease of the influence of the Westerlies, delivering less winter precipitation to the western Himalaya, while the east remained annually humid due to its proximity to the monsoonal moisture source

    Continental carbonate facies of a Neoproterozoic panglaciation, north-east Svalbard

    Get PDF
    The Marinoan panglaciation (ca 650 to 635 Ma) is represented in north-east Svalbard by the 130 to 175 m thick Wilsonbreen Formation which contains syn-glacial carbonates in its upper 100 m. These sediments are now known to have been deposited under a CO2-rich atmosphere, late in the glaciation, and global climate models facilitate testing of proposed analogues. Precipitated carbonates occur in four of the seven facies associations identified: Fluvial Channel (including stromatolitic and intraclastic limestones in ephemeral stream deposits); Dolomitic Floodplain (dolomite-cemented sand and siltstones, and microbial dolomites); Calcareous Lake Margin (intraclastic dolomite and wave-rippled or aeolian siliciclastic facies); and Calcareous Lake (slump-folded and locally re-sedimented rhythmic/stromatolitic limestones and dolomites associated with ice-rafted sediment). There is no strong cyclicity, and modern analogues suggest that sudden changes in lake level may exert a strong control on facies geometry. Both calcite and dolomite in stromatolites and rhythmites display either primary or early diagenetic replacive growth. Oxygen isotope values (−12 to +15‰VPDB) broadly covary with δ13C. High δ13C values of +3·5 to +4·5‰ correspond to equilibration with an atmosphere dominated by volcanically degassed CO2 with δ13C of −6 to −7‰. Limestones have consistently negative δ18O values, while rhythmic and playa dolomites preserve intermediate compositions, and dolocretes possess slightly negative to strongly positive δ18O signatures, reflecting significant evaporation under hyperarid conditions. Inferred meltwater compositions (−8 to −15·5‰) could reflect smaller Rayleigh fractionation related to more limited cooling than in modern polar regions. A common pseudomorph morphology is interpreted as a replacement of ikaite (CaCO3·H2O), which may also have been the precursor for widespread replacive calcite mosaics. Local dolomitization of lacustrine facies is interpreted to reflect microenvironments with fluctuating redox conditions. Although differing in (palaeo)latitude and carbonate abundance, the Wilsonbreen carbonates provide strong parallels with the McMurdo Dry Valleys of Antarctica

    NICER and Fermi GBM Observations of the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124

    Get PDF
    Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late 2017 September in a giant outburst with a peak luminosity of 2 × 10[superscript 39](d/7 kpc)[superscript 2] erg s[superscript -1] (0.1-10 keV), with no formerly reported activity. At this luminosity, Swift J0243.6+6124 is the first known galactic ultraluminous X-ray pulsar. We describe Neutron star Interior Composition Explorer (NICER) and Fermi Gamma-ray Burst Monitor (GBM) timing and spectral analyses for this source. A new orbital ephemeris is obtained for the binary system using spin frequencies measured with GBM and 15-50 keV fluxes measured with the Neil Gehrels Swift Observatory Burst Alert Telescope to model the system's intrinsic spin-up. Power spectra measured with NICER show considerable evolution with luminosity, including a quasi-periodic oscillation near 50 mHz that is omnipresent at low luminosity and has an evolving central frequency. Pulse profiles measured over the combined 0.2-100 keV range show complex evolution that is both luminosity and energy dependent. Near the critical luminosity of L ∼ 10[superscript 38] erg s[superscript -1], the pulse profiles transition from single peaked to double peaked, the pulsed fraction reaches a minimum in all energy bands, and the hardness ratios in both NICER and GBM show a turnover to softening as the intensity increases. This behavior repeats as the outburst rises and fades, indicating two distinct accretion regimes. These two regimes are suggestive of the accretion structure on the neutron star surface transitioning from a Coulomb collisional stopping mechanism at lower luminosities to a radiation-dominated stopping mechanism at higher luminosities. This is the highest observed (to date) value of the critical luminosity, suggesting a magnetic field of B ∼ 10[superscript 13] G.United States. National Aeronautics and Space Administratio

    Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier

    Get PDF
    The base of glaciers and ice sheets provide environments suitable for the production of methane. High pressure conditions beneath the impermeable ‘cap’ of overlying ice promote entrapment of methane reserves that can be released to the atmosphere during ice thinning and meltwater evacuation. However, contemporary glaciers and ice sheets are rarely accounted for as methane contributors through field measurements. Here, we present direct field-based evidence of methane production and release from beneath the Icelandic glacier Sólheimajökull, where geothermal activity creates sub-oxic conditions suited to methane production and preservation along the meltwater flow path. Methane production at the glacier bed (48 tonnes per day, or 39 mM CH4 m-2 day-1), and evasion to the atmosphere from the proglacial stream (41 tonnes per day, or 32 M CH4 m-2 day-1) indicates considerable production and release to the atmosphere during the summer melt season. Isotopic signatures (-60.2 ‰ to -7.6 ‰ for δ13CCH4 and -324.3 ‰ to +161.1 ‰ for DCH4), support a biogenic signature within waters emerging from the subglacial environment. Temperate glacial methane production and release may thus be a significant and hitherto unresolved contributor of a potent greenhouse gas to the atmosphere

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features

    Get PDF
    We present panchromatic observations and modeling of the Calcium-rich supernova (SN) 2019ehk in the star-forming galaxy M100 (d ≈ 16.2 Mpc) starting 10 hr after explosion and continuing for ~300 days. SN 2019ehk shows a double-peaked optical light curve peaking at t = 3 and 15 days. The first peak is coincident with luminous, rapidly decaying Swift-XRT–discovered X-ray emission (L_x ≈ 10⁴¹ erg s⁻¹ at 3 days; L_x ∝ t⁻³), and a Shane/Kast spectral detection of narrow Hα and He II emission lines (v ≈ 500 km s⁻¹) originating from pre-existent circumstellar material (CSM). We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at r (0.1–1) × 10¹⁷ cm. The photometric and spectroscopic properties during the second light-curve peak are consistent with those of Ca-rich transients (rise-time of t_r = 13.4 ± 0.210 days and a peak B-band magnitude of M_B = −15.1 ± 0.200 mag). We find that SN 2019ehk synthesized (3.1 ± 0.11) × 10⁻² M_⊙ of ⁵⁶Ni and ejected M_(ej) = (0.72 ± 0.040) M⊙ total with a kinetic energy E_k = (1.8 ± 0.10) × 10⁵⁰ erg. Finally, deep HST pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10 M_⊙) in binaries that lost most of their He envelope or white dwarfs (WDs). The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD+CO WD binaries
    corecore