26 research outputs found

    Process Development for Batch Production of Micro-Milling Tools Made of Silicon Carbide by Means of the Dry Etching Process

    Get PDF
    Downsized and complex micro-machining structures have to meet quality requirements concerning geometry and convince through increasing functionality. The development and use of cutting tools in the sub-millimeter range can meet these demands and contribute to the production of intelligent components in biomedical technology, optics or electronics. This article addresses the development of double-edged micro-cutters, which consist of a two-part system of cutter head and shaft. The cutting diameters are between 50 and 200 μm. The silicon carbide cutting heads are manufactured from the solid material using microsystem technology. The substrate used can be structured uniformly via photolithography, which means that 5200 homogeneous micro-milling heads can be produced simultaneously. This novel batch approach represents a contrast to conventionally manufactured micro-milling cutters. The imprint is taken by means of reactive ion etching using a mask made of electroplated nickel. Within this dry etching process, characteristic values such as the etch rate and flank angle of the structures are critical and will be compared in a parameter analysis. At optimal parameters, an anisotropy factor of 0.8 and an etching rate of 0.34 µm/min of the silicon carbide are generated. Finally, the milling heads are diced and joined. In the final machining tests, the functionality is investigated and any signs of wear are evaluated. A tool life of 1500 mm in various materials could be achieved. This and the milling quality achieved are in the range of conventional micro-milling cutters, which gives a positive outlook for further development

    The QCD transition temperature: results with physical masses in the continuum limit II.

    Get PDF
    We extend our previous study [Phys. Lett. B643 (2006) 46] of the cross-over temperatures (T_c) of QCD. We improve our zero temperature analysis by using physical quark masses and finer lattices. In addition to the kaon decay constant used for scale setting we determine four quantities (masses of the \Omega baryon, K^*(892) and \phi(1020) mesons and the pion decay constant) which are found to agree with experiment. This implies that --independently of which of these quantities is used to set the overall scale-- the same results are obtained within a few percent. At finite temperature we use finer lattices down to a <= 0.1 fm (N_t=12 and N_t=16 at one point). Our new results confirm completely our previous findings. We compare the results with those of the 'hotQCD' collaboration.Comment: 19 pages, 8 figures, 3 table

    Thin-Film Microtransformer for High Frequency Power Applications

    Get PDF
    This paper describes a development of a microtransformer device fabricated using thin film technology. The device is designed for higher switching frequencies beyond to 50 MHz power applications. A especially by the microtransformer is a design, which allows wide flexibility of a device by choosing a different values of an inductance and of a windings ratio. The microtransformer device is integrated on silicon substrate consisting of a closed magnetic core and six coils. Both, primary and secondary device side consist three coils. Therefore, this design allows using of a device for different switching frequencies. As a magnetic material for transformer core a permalloy NiFe45/55 was chosen

    Thin-Film Microtransformer for High Frequency Power Applications

    No full text
    This paper describes a development of a microtransformer device fabricated using thin film technology. The device is designed for higher switching frequencies beyond to 50 MHz power applications. A especially by the microtransformer is a design, which allows wide flexibility of a device by choosing a different values of an inductance and of a windings ratio. The microtransformer device is integrated on silicon substrate consisting of a closed magnetic core and six coils. Both, primary and secondary device side consist three coils. Therefore, this design allows using of a device for different switching frequencies. As a magnetic material for transformer core a permalloy NiFe45/55 was chosen

    Investigation of intracochlear dual actuator stimulation in a scaled test rig

    No full text
    For patients suffering from profound hearing loss or deafness still having respectable residual hearing in the low frequency range, the combination of a hearing aid with a cochlear implant results in the best quality of hearing perception (EAS – electric acoustic stimulation). In order to optimize EAS, ongoing research focusses on the integration of these stimuli in a single implant device. Within this study, the performance of piezoelectric actuators, particularly the dual actuator stimulation, in a scaled uncoiled test rig was investigated

    Investigation of intracochlear dual actuator stimulation in a scaled test rig

    Get PDF
    For patients suffering from profound hearing loss or deafness still having respectable residual hearing in the low frequency range, the combination of a hearing aid with a cochlear implant results in the best quality of hearing perception (EAS – electric acoustic stimulation). In order to optimize EAS, ongoing research focusses on the integration of these stimuli in a single implant device. Within this study, the performance of piezoelectric actuators, particularly the dual actuator stimulation, in a scaled uncoiled test rig was investigated

    Investigation of intracochlear dual actuator stimulation in a scaled test rig

    No full text
    For patients suffering from profound hearing loss or deafness still having respectable residual hearing in the low frequency range, the combination of a hearing aid with a cochlear implant results in the best quality of hearing perception (EAS – electric acoustic stimulation). In order to optimize EAS, ongoing research focusses on the integration of these stimuli in a single implant device. Within this study, the performance of piezoelectric actuators, particularly the dual actuator stimulation, in a scaled uncoiled test rig was investigated
    corecore