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NIC/DESY Zeuthen Forschungsgruppe, D-15738 Zeuthen, Germany

Zoltan Fodor

NIC/DESY Zeuthen Forschungsgruppe, D-15738 Zeuthen, Germany

Bergische Universität Wuppertal, D-42119 Wuppertal, Germany
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Abstract: We extend our previous study [Phys. Lett. B643 (2006) 46] of the cross-

over temperatures (Tc) of QCD. We improve our zero temperature analysis by using

physical quark masses and finer lattices. In addition to the kaon decay constant

used for scale setting we determine four quantities (masses of the Ω baryon, K∗(892)

and φ(1020) mesons and the pion decay constant) which are found to agree with

experiment. This implies that –independently of which of these quantities is used to

set the overall scale– the same results are obtained within a few percent. At finite

temperature we use finer lattices down to a<∼0.1 fm (Nt = 12 and Nt = 16 at one

point). Our new results confirm completely our previous findings. We compare the

results with those of the ’hotQCD’ collaboration.

Keywords: QCD phase transition, lattice QCD.
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1. Introduction

There is a continuously high interest in determining properties of the high temper-

ature quark gluon matter. One of the major goals is to determine the temperature

scale, where the ordinary, hadronic matter is supposed to undergo a transition to

the high temperature phase. Since this transition seems to be a continuous one [1],

there is no unambiguous temperature, where the transition takes place. In general

different observables may have their characteristic points (e.g. peak position, inflec-

tion point) at different temperature values. These temperatures are completely well

defined and in principle can be calculated with an arbitrary precision.

Current lattice simulations tend to disagree on these characteristic temperature

scales. On the one hand the published results of the RBC-Bielefeld collaboration

found [2]

Tc = 192(4)(7) MeV (1.1)
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for the transition temperature. By considering different observables they obtained

transition temperature values that were consistent with each other. In later works of

the group (which has been enlargened to ’hotQCD’ collaboration in the meantime)

the analysis has been extended to other fermion actions and smaller lattice spacings

[3, 4, 5]. The results presented in these works seem to confirm those of [2], in partic-

ular [4] concluded as: ”The preliminary results of the hotQCD collaboration indicate

that the crossover region for both deconfinement and chiral symmetry restoration lie

in the range T = (185-195) MeV”.

On the other hand the results that we presented in [6] are quite different. Dif-

ferent observables led to significantly different transition temperatures and these

temperature values were considerably lower than the values of the ’hotQCD’ collab-

oration. For example for the transition temperature defined by the peak position of

the renormalized chiral susceptibility we obtained

Tc(χψ̄ψ) = 151(3)(3) MeV, (1.2)

which is more than 20% lower than the transition temperature of [2] (see Equation

1.1). The differences between the findings of the collaborations can be made even

more transparent and thus more disturbing by comparing the temperature depen-

dence of the observables. We have found discrepancy in all quantities that we have

considered so far, so it will be most probably present in the equation of state, too.

Relating the above temperature scales to experimental observables of heavy-ion

collisions is a highly nontrivial task. Among other things one has to take into account

that most lattice calculations are carried out with periodic boundary condition, which

is convenient for the computations, but rather far from the experimental setup.

An exploratory quenched study suggests [7] that critical temperatures with realistic

boundary conditions can be up to 30 MeV larger than the values, which are measured

in conventional lattice calculations.

The aim of the present paper is to improve our previous results [6] and to find

some hints for the origin of the discrepancies discussed above. We present here three

significant improvements:

• we extend our zero temperature simulations by simulating directly with the

physical values of the quark masses,

• in order to verify that our results are independent of the physical quantity we

choose to set the scale we measured five experimentally well-known quantities,

• we extend our finite temperature simulations by taking an even smaller lattice

spacing (Nt = 12 and at one point even Nt=16) than the smallest one we had

in [6].
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The zero temperature results are presented in Section 2. The finite temperature

results are to be found in Section 3, where a comparison with the latest results of

the ’hotQCD’ collaboration is also done.

2. Zero temperature simulations

The primary role of zero temperature simulations is that they are used to convert the

dimensionless temperature of the lattice to physical units. Therefore, when looking

for systematic errors, one has to pay as much attention to these simulations as to the

finite temperature ones. In addition, zero temperature runs are used to renormalize

certain quantities in order to obtain a meaningful continuum limit. Using these zero

temperature simulations one can also obtain the so called Lines of Constant Physics

(LCP), which are constraints among the lattice parameters. In our case the LCP tells

us how to tune the bare light quark masses (mud) and the bare strange quark mass

(ms) as the function of the gauge coupling (β) so that certain hadronic quantities

on the lattice take the same values as in the experiments. In [6] we have determined

the LCP using three hadronic quantities: the pion and kaon masses and the kaon

decay constant. When we say that the light or strange quark masses are set to their

physical values, we mean that they are on this LCP (mLCP

ud or mLCP

s ).

One shortcoming of essentially all lattice calculations these days is that the

zero temperature runs were done at nonphysical light quark masses, only the strange

quark mass was fixed to its physical value. In [6] we had carried out zero temperature

simulations at four different points with nonphysical light quark masses at each

lattice spacing and made an extrapolation down to the physical point. It is hard to

estimate the systematic errors of such extrapolations. Obviously such errors might

also influence the determination of our LCP. In this paper we will use only the LCP

determined using extrapolations in [6]. In order to check the size of the systematics

of these chiral extrapolations, we decided to carry out new simulations directly at

the physical point for the same lattice spacings as in [6]. As it will be shown our

approach of [6] was very accurate.

2.1 Action, algorithm

The lattice action is the same as we used in [6]. On the algorithmic side we have

made couple of improvements. We use Omelyan integration scheme [8] to integrate

the evolution equations of Rational Hybrid Monte Carlo (RHMC) (for details on

the RHMC algorithm see [9]). The smallest two poles of the rational approximation

of the light quark determinant are put to a larger integration timescale, than the

remaining ones. The solver residual is set to ǫff = 10−5, when calculating the fermion

force in the RHMC, and ǫact = 10−8 in the RHMC action. The code works mostly

in float precision, while smaller than 10−6 precisions are reached by using mixed

precision inverters. The updates of the links and momenta are done in very large
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precision (80-bit or more), which results in an exactly reversible algorithm. The

reversibility is thus not effected by the tolerance of the fermion force solver (ǫff).

Our code is ported to two types of architectures: Intel PC equipped with Graph-

ical Processing Units (see [10]) and BlueGene/P.

2.2 Simulation points

In Table 1 we give the lattice spacings and the number of trajectories for our zero

temperature ensembles. These runs are done at the physical values of the light and

strange quark masses. We also show the quark masses of our old runs, which were

used to carry out the chiral extrapolations to the physical point. The lattice vol-

β Nt ×N3

s # traj mud/m
LCP

ud mud/m
LCP

ud in [6]

3.45 32 × 243 1500 1 3, 5, 7, 9

3.55 32 × 243 3000 1 3.5, 5, 7, 9

3.67 48 × 323 1500 1 4, 6, 7.5, 9.5

3.75 48 × 403 1500 1 4, 6, 8, 10

3.85 64 × 483 1500 1 –

Table 1: Gauge coupling, lattice size, number of trajectories for our zero temperature

simulation points. The light and strange quark masses are set to their physical values,

ie. they are on the LCP as described in the text. Next column shows, which light quark

masses were used in [6] to carry out the chiral extrapolations.

umes were chosen so that the continuum finite volume corrections were below 0.5%

for the pion and kaon masses and decay constants [11]. We measured gauge observ-

ables, chiral condensates and susceptibilities after every, and hadron correlators after

every tenth trajectory. We performed correlated fits with the hadron propagators

by using the appropriate formulas for staggered mesons and baryons as described

in [12]. When extracting nucleon masses, we observed similar ambiguities when us-

ing different quark sources as described in [13]. We decided not to use them in the

further analysis.

2.3 Checking chiral extrapolations

First let us take a look at the pion and kaon masses (see Figure 1). In [6] we

used different fit formulas to extrapolate to the physical point: for the kaon mass

square the fit function was linear in the quark mass, for the pion it was cubic. For

the decay constants we used a linear function plus a logarithmic mud logmud term

with unconstrained coefficients. Comparing the chiral extrapolations with results of

the direct simulations we find a remarkable agreement. For all four quantities the

difference is on the 1% level for all lattice spacings.

We have also studied the effect of our extrapolations in case of the additive

renormalization constant of the chiral susceptibility. One expects that a slight change
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Figure 1: Chiral extrapolation vs. direct simulation of the pseudoscalar decay constants

and masses for β = 3.55. Since this point has the highest statistics, any mismatch between

the extrapolation and the direct result would be most pronounced here. We do not observe

such a mismatch. Black points are data from [6], blue lines are our fit functions also from

[6], which were used to extrapolate to the physical point, red points are the results of the

new simulations at the physical point. All values are in lattice units.

in the additive constant does not change the position of a peak and, indeed the

uncertainty of the extrapolation turned out to be negligible on the location of the

transition temperature (see the finite temperature section).

2.4 Setting the scale

β 3.45 3.55 3.67 3.75 3.85

a(mπ)[fm] 0.2832(2) 0.2193(1) 0.1548(2) 0.1267(2) 0.1002(1)

a(mK)[fm] 0.2782(2) 0.2153(1) 0.1524(1) 0.1246(1) 0.0991(1)

a(fK)[fm] 0.286(2) 0.217(1) 0.153(1) 0.123(1) 0.097(1)

a(avg)[fm] 0.2824(6) 0.2173(4) 0.1535(3) 0.1249(3) 0.0989(2)

err[%] 1.5 0.9 0.9 1.4 1.5

Table 2: Lattice spacings obtained from different quantities (pion and kaon masses and

the kaon decay constant as well as the average of the three ). Errors in parentheses are the

quadratic sum of statistical and – in case of fK – experimental errors. The last row shows

the maximum deviation from the average spacing, which we consider as the systematic

error of our scale setting.

In [6] we have determined the Lines of Constant Physics and the scale using three

quantities: kaon and pion mass and kaon decay constant. There we were using chiral

extrapolations. Now we can check directly at the physical point, how consistent are
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the scales obtained from these three quantities (see Table 2). We take mπ = 135

MeV, mK = 495 MeV and fK = 155.5 MeV for the physical values [14]1. If the

determination of the LCP in [6] were completely correct, then the three different

quantities would give the same lattice spacing. As it can be seen the deviation from

the average of the three scales is always less than 2%. In [6] we have claimed a

2% uncertainty in the scale setting, so our current findings completely justify the

previous results.

We will use this average scale in our finite temperature analysis and consider this

2% as an uncertainty of the transition temperature arising from the zero temperature

simulations.

In the following subsections we will

Figure 2: Mass squared difference of the

non-Goldstone pions (i5 and ij) and the Gold-

stone pion as a function of the lattice spacing

squared.

present some results for zero tempera-

ture observables: hadron and quark masses

and decay constants. In these cases we

attempt to eliminate even this small 2%

systematic error. On the ensembles of

Table 1 in addition to our measurements

we measure propagators, where the quark

masses are set to ±20% of the phys-

ical strange quark mass and ±10% of

the physical light quark mass. By inter-

polating between these quark mass val-

ues we look for those strange and light

quark mass parameters, where mπ/fK
and mK/fK take their experimental val-

ues exactly. The so obtained correction

to the quark masses has turned out to be

always less than 7%. At this corrected

point we measure the ratios of various observables. This procedure takes into account

only the change in the operator due to the variation in the quark mass, the slight

change in the background gauge field is neglected. However, as we checked it for

a few points, in ratios of observables this effect largely cancels and the uncertainty

related to this procedure remains far below our statistical accuracy.

2.5 Taste violation

The taste symmetry breaking of the staggered fermion discretization splits up the

originally degenerate masses of the pion multiplet, leaving only one pion massless

in the chiral limit. Taste symmetry violation has to vanish in the continuum limit,

otherwise the staggered discretization would fail to be a proper fermion discretiza-

tion. Therefore, it is important to check whether the pion splitting vanishes when

carrying out a continuum extrapolation using the available lattice spacings. This
1In [6] we used the Particle Data Group [15] value of fK = 159.8 MeV. Note, however, that in

the last 2.5 years the Particle Data Group has reduced the central value of fK by about 3%, which

[14] reduces our Tc values in physical units by the same amount.
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extrapolation provides a useful hint where the scaling regime is expected to start.

We take two representatives of the non-Goldstone pions: i5/MVII and ij/MVIII (the

notations are that of MILC and [12]). Let us take a look at the quadratic mass differ-

ence of the non-Goldstone pions and the Goldstone pion as a function of the lattice

spacing squared (see Figure 2). One can clearly see that the taste violation decreases

with decreasing lattice spacing. Moreover we can also observe that lattice spacings

which are larger than a ∼ 0.15fm (the corresponding critical temperature in lattice

units is 1/Nt ∼ 1/8) are not in the a2-scaling regime in the case of these quantities.

The taste violation for the three finest lattice spacings can be extrapolated to zero

lattice spacing: for both type of non-Goldstone pions the splitting is consistent with

zero in the continuum limit.

2.6 Hadron masses, ms/mud and fK/fπ

A necessary condition for the correctness of the finite temperature results is that

zero temperature observables in the continuum limit are consistent with experiments.

Moreover, the lattice spacing dependence of the zero temperature observables can

give a hint on the lattice spacing range, where lattice artefacts are expected to scale

as a2.

Let us first take a look at various hadron masses (see left panel of Figure 3). At

the top of the figure the mass of the Ω baryon is plotted as a function of the lattice

spacing squared. The red band is the experimental value of the Ω mass together with

its uncertainty (to which the experimental uncertainty of our scale fixing quantity

fK also contributes). Our four finest lattice spacings are nicely consistent with

the experiments. This fact confirms the correctness of the fK-based scale setting

procedure. In other words, we have shown that performing the scale setting with the

Ω mass would give the same continuum values for Tc in physical units.

The φ(1020) meson mass is plotted in the middle. The open and solid symbols

correspond to two different vector meson operators (MIII and MIV using the no-

tations of [12]), they are supposed to give the same mass in the continuum limit.

We use only the connected part of the operators when evaluating the propagators

(the disconnected part is very expensive to calculate; however, as large scale T=0

simulations show [16], omitting the disconnected part for φ(1020) could provide the

proper scale, the uncertainty related to this choice is subdominant). The plot shows

also an agreement with the experiment (red band).

The lower plot shows the K∗(892) vector meson mass. Open and solid symbols

are the two vector meson operators, as in the case of φ(1020). The agreement is

somewhat worse than for the other two masses. However one has to keep in mind

that at the physical point in our boxes the strong decay of K∗(892) is kinematically

allowed. Our operators are supposed to have negligibly small coupling to scattering

states and couple mostly to the resonance. The resonance energy level at a given

volume is not necessarily the central value of the resonance (mK∗), but it might be
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Figure 3: Left panel: masses of Ω baryon, φ(1020) meson and K∗(892) meson in MeV

on our four finest lattices as a function of the lattice spacing squared. Right panel: quark

mass ratio and fK/fπ for all five ensembles. See text for a detailed explanation.

some other value within the resonance distribution (which has ΓK∗ width). Therefore,

beside the red band, which is the experimental value of the K∗(892) mass, we also

draw a 2ΓK∗ wide magenta band inside which the resonance levels are expected to

appear.

The right panel of Figure 3 shows the ratio of the strange and light quark masses.

Note, that this is not the ratio along the LCP (which was fixed to mLCP

s /mLCP

ud =

27.3), but the ratio of the quark masses after carrying out the correction to the LCP

as described in Subsection 2.4. As one can clearly see there is no observable lattice

spacing dependence for our three smallest lattice spacings. Therefore it is completely

justified to take the result on the finest lattice spacing as the continuum estimate for

the quark mass ratio: ms/mud = 28.15. The statistical error is on the 0.4% level, the

systematic uncertainties are somewhat larger.

On the lower part of the right panel we plot the ratio of kaon and pion decay

constants against the lattice spacing squared for all five ensembles. The red band

is the current best estimate for fK/fπ including the uncertainty. Opened symbols

are the original lattice data, whereas the solid ones contain the continuum limit

finite volume corrections [11]. For the three finest lattice spacings we can observe

a clear decreasing tendency. An extrapolation with an a2 scaling function yields

fK/fπ = 1.181 in the continuum limit. The statistical error of fK/fπ is on the 0.3%

level. The systematic uncertainties are of the same order of magnitude.

A detailed analysis of the systematic uncertainties of ms/mud as well as fK/fπ
is quite interesting from the T=0 physics point of view and will be published else-
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Figure 4: Left panel: the static quark force multiplied by the distance squared for three

different smearing levels. The horizontal line corresponds to 1.65, which value defines the

Sommer-scale. Right panel: Sommer-scale in physical units as a function of the lattice

spacing squared. The red band is the r0 determination from [18].

where [17]. In this forthcoming publication we discuss the masses of the Ω baryon,

the K∗(892) meson and the φ(1020) meson in detail, too.

The basic message of this subsection can be summarized as follows. Using an

fK based scale setting procedure (see Subsection 2.4), the masses of Ω, K∗(892),

φ(1020) and the pion decay constant are consistent with their experimental values

on our finest lattices. This implies that independently of which of these quantities is

used for scale setting, we would obtain the same results in the continuum limit.

2.7 Static quark potential

A popular way to fix the scale in lattice QCD is to use quantities related to the static

quark potential V (r), like the string tension or Sommer scale [19]. The major advan-

tage compared to other methods is that there are no ambiguities in the construction

of operators due to staggered taste violation, since the Wilson-loops are built up only

from the gauge fields. A disadvantage is that on coarse lattices (which are usual in

thermodynamical calculations) the static quark potential determination is burdened

by sizeable systematics. It is hard to extract ground state energy levels of the static

quark-antiquark pair (compared to mass extraction in hadron spectroscopy), since

the signal disappears quickly in the noise.

We use the following gauge link smearing recipe to increase our signal/noise ra-

tio. The spatial links are smeared by 30 steps of APE smearing [20], this reduces

the excited state contamination while keeping the ground state energy intact for all

distances. We also smear the timelike links by 3 steps of HYP smearing [21], keep-

ing all the intermediate steps, too. This decreases the noise substantially, however
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distorts the potential for small distances. By comparing the results of zero, one, two

and three steps of HYP smearing we can determine a minimal distance for each level

of HYP smearing steps, above which that smearing level can be safely used, ie. there

is no significant distortion in the potential. Let us illustrate this on the left panel

of Figure 4, where the quantity r2dV/dr is plotted as a function of the distance for

our finest lattice spacing (β = 3.85). Different symbols are used for the different

HYP-smearing levels. The filled symbols indicate which smearing level was used at a

given distance. For small distances the smearing distorts the potential, there we use

no smearing at all. As the distance increases, the distortion effect becomes gradually

smaller, which makes it possible to use higher smearing levels.

The Sommer scale (r0) is defined as the distance where r2dV/dr = 1.65. We

estimate the systematic errors as follows: beside the potential we make fits to the

force itself, we consider different interpolating functions and different types of Wilson-

loops. For our two coarsest lattice spacings these systematics turned out to be large.

We measure therefore the r2 scale, which is defined as the point where r2dV/dr = 2.

On coarse lattices it has considerably smaller systematic errors than what r0 has.

On the right panel of Figure 4 we show the lattice spacing dependence of r0, on the

coarsest lattices its value was derived from that of r2. A clear downward trend can

be observed as the lattice spacing is decreased, in the continuum limit we get

r0 = 0.48(1)(1) fm. (2.1)

The first error comes from the statistical and systematic error of the r0 determi-

nation, whereas the second is from the uncertainty of the scale determination. This is

consistent with an other staggered r0 determination [18]: r0 = 0.469(7) fm, which is

the value used by the ’hotQCD’ collaboration in their thermodynamical studies. Let

us mention here that there are other r0 determinations in the literature: 0.467(33) fm

from the QCDSF collaboration [22] and 0.492(6)(7) fm from PACS-CS [16]. The dif-

ferences between the results suggest the possibility that the systematic errors are

underestimated in the r0 determination.

3. Finite temperature simulations

In [6] we used four lattice spacings, Nt = 4, 6, 8 and 10 to study the lattice spacing

dependence of thermodynamical observables. The quark masses were set to their

physical values, i.e. to mLCP

ud and mLCP

s . In case of the transition temperatures we

carried out a continuum extrapolation based on the finest three lattices (Nt = 6, 8

and 10).

In this work we extend our finite temperature data set by simulations on Nt = 12

and 16 lattices with physical quark masses. As we have shown with our finite volume

analysis [1] the temperature dependence changes only very little in the Ns/Nt=3–5
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Figure 5: Renormalized chiral susceptibility normalized by T 4. Open colored symbols

are results on smaller volumes (with aspect ratio Ns/Nt around 3), whereas filled colored

symbols are results on larger volumes (with aspect ratio four). For comparison results of

the ’hotQCD’ collaboration with two different fermion actions on Nt = 8 are also shown,

they have been rescaled by an appropriate factor (see text).

range. Therefore, we generated between 1500 and 3500 trajectories on 12·363 lattices

at 18 different temperature values and on a 16 · 483 lattice at one temperature. The

lattice scale range which we examined in Section 2, covers nicely the transition regime

of the Nt ≤ 12 lattices. In case of the strange quark number susceptibility we will

show results for somewhat higher temperatures (> 210 MeV on Nt = 12 and 260

MeV on Nt = 16). In this case the scale was determined by a method which will be

published elsewhere [23].

In the following we present the results and compare them with those of the

’hotQCD’ collaboration.

3.1 Renormalized chiral susceptibility

The light quark chiral susceptibility (χψ̄ψ) is minus one times the second derivative

of the free energy density with respect to the light quark mass. It is ultraviolet diver-

gent. In [1] we proposed the following renormalization recipe. Since the ultraviolet

divergences are independent of the temperature, subtracting the susceptibility at

zero temperature from the susceptibility at finite temperature removes the additive

divergences:

∆χψ̄ψ = χψ̄ψ(T ) − χψ̄ψ(T = 0). (3.1)

The multiplicative renormalization can be done by multiplying by the square of the

bare quark mass:

∆χψ̄ψ → m2

ud · ∆χψ̄ψ. (3.2)
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Figure 6: Comparison of the temperature dependence of the renormalized chiral suscep-

tibility normalized by various powers of T . Only our Nt = 12 data are shown. Different

symbols correspond to different normalizations.

On Figure 5 we plot this renormalized chiral susceptibility normalized by T 4 as a

function of the temperature. We show results for three different lattice spacings (Nt =

8, 10 and 12). In case of Nt = 8 and 10 we have the results on two different volumes

as well, the larger volumes are plotted with filled symbols. The finite temperature

data on Nt = 8 and 10 was taken from our old paper. The renormalization was

carried out with the new zero temperature results (see Subsection 2.3). The scale

has also slightly changed due to the change in the experimental value of the fK in

the Particle Data Group (see Subsection 2.4). This results in an overall ∼ 5 MeV

downward shift in the temperature compared to what we reported in [6].

We see no considerable lattice artefacts, in particular the new Nt = 12 results are

consistent with the Nt = 10 ones from our old data set. A small volume dependence

can be seen in the height of the susceptibility peak, but the volume dependences of

the width and the position are not significant within the present statistics.

In order to help comparisons with other approaches we also provide the temper-

ature dependence for the renormalized chiral susceptibility normalized by T 2 or not

normalized by any power of T , at all (see Figure 6). As it can be seen the curves

are gradually shifted to the right, resulting in increasing transition temperatures de-

fined from the peak positions (see Table 3). This is a feature of the crossover type

transition, different definitions generally result in different temperature values.

Now let us make the comparison with the results of the ’hotQCD’ collaboration.

First let us consider the data of [3], which uses ’asqtad’ fermion discretization. The

light quark masses in our simulations and in the simulations of [3] are quite different.

The latter uses three times larger light quark masses than the physical, which is
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Figure 7: Renormalized chiral condensate as a function of the temperature. On the left

panel the temperature is given in physical units, whereas on the right in the units of the

Sommer scale (r0). Colored opened symbols are the results on Nt = 8, 10 and 12 lattices.

For comparison results of the ’hotQCD’ collaboration with two different fermion actions

on Nt = 8 are also shown.

used in our work. Since the renormalized chiral susceptibility depends strongly on

the quark mass, there is no problem with the fact that the height of the susceptibility

is considerably larger in the simulations of [3] than what we obtain. For convenience

we multiply the results of [3] by a factor of 0.4, these points are the black filled

circles on Figure 5. We also plot the data obtained using the ’p4fat’ action [24]

(black opened circles). These results were multiplied with a factor of 0.15 for similar

reasons as for the ’asqtad’ action. Both ’hotQCD’ results were simulated on Nt = 8

lattices. Whereas the results of the ’hotQCD’ group agree on the position of the

susceptibility peak, we observe a huge disagreement with our data, which is in the

order of 35 MeV. It is unclear whether an effect of this size can be explained only

by the difference in the quark masses. Most probably the origin is somewhere else:

as we will see soon, much less quark mass dependent quantities also show similar

discrepancies.

3.2 Renormalized chiral condensate

The light quark chiral condensate (〈ψ̄ψ〉) is minus one times the first derivative of the

free energy density with respect to the light quark mass. It is ultraviolet divergent,

a possible way of removing divergences was proposed in [25]. If one assumes that

the additive divergences of the free energy density depend on the quark masses only

through the combination m2

ud +m2

s, then one can get rid of the additive divergences
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in 〈ψ̄ψ〉 by using the strange quark condensate (〈s̄s〉):

∆l,s = 〈ψ̄ψ〉 −
2mud

ms

〈s̄s〉. (3.3)

The remaining multiplicative divergences can be removed by dividing with the same

quantity at zero temperature:

∆l,s →
∆l,s(T )

∆l,s(T = 0)
. (3.4)

On Figure 7 we plot this quantity as a function of the temperature. There is

no significant lattice spacing or volume dependence for lattices of Nt = 8, 10 and 12

and for aspect ratios 3-4. For comparison we take the Nt = 8 data of the ’hotQCD’

collaboration from [5]. Similar to the case of the chiral susceptibility we find a huge

disagreement between the curves in the transition regime. Again the shift between

the curves of the different groups is in the order of 35 MeV.

One might think that the different

Figure 8: Strange quark number suscep-

tibility normalized by T 2. Colored opened

symbols are results on Nt = 8, 10 and 12

lattices. We have an additional point on an

Nt = 16 lattice at our highest temperature.

For comparison results of the ’hotQCD’ col-

laboration with two different fermion actions

on Nt = 8 are also shown.

scale fixing methods used by the differ-

ent collaborations are responsible for this

35 MeV discrepancy. The ’hotQCD’ col-

laboration uses the Sommer scale in their

scale fixing procedure, so it can be en-

lightening to look at our results, if the

temperature is given in units of the Som-

mer scale (right panel of Figure 7). The

scaling is somewhat worse in terms of

this quantity, however for the finest lat-

tices the discrepancy is still present. This

does not come as a surprise, since the r0
in physical units obtained in Subsection

2.7 is perfectly consistent with the one

used by the ’hotQCD’ group.

3.3 Strange quark number suscep-

tibility

The strange quark number susceptibil-

ity (χs) is defined as minus one times the

derivative of the free energy density with respect to the square of the strange quark

chemical potential. It is conveniently normalized by T 2, by which it will asymptoti-

cally reach one as the temperature is increased to infinity (Stefan-Boltzmann limit).
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Our results on Nt = 8, 10 and 12 are shown in Figure 8. We observed no

volume dependence, therefore we use the same symbols for the two different aspect

ratios. There is no significant lattice spacing dependence for temperatures smaller

than ∼ 170 MeV, whereas for higher temperatures the lattice artefacts are somewhat

larger. This is expected, since in the Stefan-Boltzmann limit the lattice artefacts are

known to be large for our action. We also have an additional point on a very fine

lattice (Nt = 16) at a high temperature.

The comparison with the results of the ’hotQCD’ collaboration (see Reference

[26]) brings us to a similar conclusion as for the other two quantities that we have

considered before. Around the transition point there is an approximately 20 MeV

shift between the results of the two groups. For larger than ∼ 230 MeV temperatures

our finer lattices are in good agreement with the ’hotQCD’ results.

3.4 Transition temperatures

χψ̄ψ/T
4 χψ̄ψ/T

2 χψ̄ψ ∆l,s L χs
this work 146(2)(3) 152(3)(3) 157(3)(3) 155(2)(3) 170(4)(3) 169(3)(3)

our work ’06 151(3)(3) - - - 176(3)(4) 175(2)(4)

RBCBC - 192(4)(7) - - 192(4)(7) -

Table 3: Transition temperatures for different observables and in different works. See

the text for explanation.

In this subsection we present our results for the transition temperatures obtained

from different quantities (see Table 3). The first three columns contain the transition

temperatures of the renormalized chiral susceptibility, each of them normalized dif-

ferently: with T 4, T 2 and without any power of T . The peak position was determined

by fitting a quadratic curve to the points around the peak. The first error comes

from the statistical errors and from the variation of the fit range, whereas the second

error arises from the accuracy of our scale determination. As it can be clearly seen

and as it has been already shown before, different normalizations yield significantly

different peak positions.

In the next three columns the transition temperatures from the inflection point

of the renormalized chiral condensate, renormalized Polyakov loop and the strange

quark number susceptibility are given. These inflection points were obtained by fit-

ting cubic polynomials to the data. Systematic errors were estimated by the variation

of the fit ranges.

We have also measured the width of the transition for all these observables (the

definition can be found in [6]). It is found to be in the 25-30 MeV range in all cases.

In the second line we provide our previously published results from 2006 [6]. Our

lattice results are in complete agreement with our earlier findings, the reason for the

approximately 5 MeV shift to lower Tc values is almost completely due to the change
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of the experimental value of fK provided by the Particle Data Group (155.5 MeV

[14] instead of 159.8 MeV [15]). Without this change in the input parameter the

change of the Tc values would be about or less than 1 MeV.

We also include into the table the combined physical quark mass and contin-

uum extrapolated estimates of the RBC-Bielefeld collaboration (RBCBC) [2]. The

RBCBC did not use renormalized quantities, furthermore the transition temperature

related to the Polyakov loop is determined from the peak position of the Polyakov-

loop susceptibility, which is different from our definition. These differences are ex-

pected to be small compared to the statistical and systematic uncertainties. The

discrepancy between the temperature values of the two collaborations is worryingly

large, as it was already emphasized in the Introduction.

4. Conclusions, outlook

We have improved our previous calculations on the transition temperature [6] by

three means. First of all, the simulations for our zero temperature analysis have been

done with the physical values of the quark masses. Secondly, we extended our hadron

spectrum, decay constants, quark mass and static quark potential measurements. As

a third improvement we have decreased the lattice spacing at finite temperature by

simulating Nt = 12 lattices (and Nt=16 at one point).

For the first time in the literature we performed both the T = 0 and T > 0 anal-

yses by simulating directly with physical quark masses. This procedure eliminates

all uncertainties related to the extrapolation to the physical masses. The analysis

confirms that the uncertainty of our scale determination is less than about 2%. More-

over, all spectral quantities are consistent with experiments and/or previous lattice

calculations. This indicates that the finite temperature results are independent of

which quantity (Ω, K∗ or Φ mass, or the pion decay constant) we chose for scale

setting.

At finite temperature we determined the temperature dependence of several

renormalized quantities. As a generic feature of any crossover, the transition tem-

peratures obtained from different quantities are different, they range from 146 to

170 MeV. We have to emphasize again that these numbers correspond to an infinite

volume system. As an exploratory study in quenched QCD shows [7], for the typi-

cal volumes and boundary conditions realized at heavy ion collisions, the transition

temperatures can be up to 30 MeV higher than the infinite volume values presented

here and usually in the literature.

The new results at finite temperature are in good agreement with our previous

findings. Note, however, that in the last 2.5 years Particle Data Group has reduced

the central value of fK by about 3%, which reduces our Tc values in physical units

by the same amount. The lattice spacings used in this work are smaller than in any
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previous lattice study. As a consequence, the lattice artefacts seem to be small, there

are even quantities, where the artefacts are not significant at all.

We have taken a closer look at the disagreement between the results of current

thermodynamical calculations. We see approximately 20 − 35 MeV difference in

the transition regime between our results and those of the ’hotQCD’ collaboration.

This difference can be observed between the temperature dependence of the curves

for all the quantities that we have compared: the light quark chiral susceptibility,

renormalized chiral condensate and the strange quark number susceptibility. Finding

the reason for this disagreement seems to be a task for the future.

As a final remark we have to mention that the staggered formalism used in this

work and all other large scale thermodynamics studies may suffer from theoretical

problems. To date it is not proven that the staggered formalism with 2+1 flavors

really describes QCD in the continuum limit. Therefore it is desirable to also study

QCD thermodynamics with a theoretically firmly established (e.g. Wilson type)

fermion discretization.
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