2,190 research outputs found

    Few-Body Bound Complexes in One-dimensional Dipolar Gases and Non-Destructive Optical Detection

    Full text link
    We consider dipolar interactions between heteronuclear molecules in low-dimensional geometries. The setup consists of two one-dimensional tubes. We study the stability of possible few-body complexes in the regime of repulsive intratube interaction, where the binding arises from intertube attraction. The stable dimers, trimers, and tetramers are found and we discuss their properties for both bosonic and fermionic molecules. To observe these complexes we propose an optical non-destructive detection scheme that enables in-situ observation of the creation and dissociation of the few-body complexes. A detailed description of the expected signal of such measurements is given using the numerically calculated wave functions of the bound states. We also discuss implications on the many-body physics of dipolar systems in tubular geometries, as well as experimental issues related to the external harmonic confinement along the tube and the prospect of applying an in-tube optical lattice to increase the effective dipole strength.Comment: 16 pages, 15 figures, published versio

    Hydrogeology, Hydrogeochemistry, and Spoil Settlement at a Large Mine-Spoil Area in Eastern Kentucky: Star Fire Tract

    Get PDF
    An applied research program at the Star Fire surface mine in eastern Kentucky, owned and operated by Cypress-AMAX Coal Co., defined spoil characteristics to develop and monitor water resources, which will help identify a reliable water supply for future property development. Water stored in the mine spoil may provide a usable ground-water supply, and the spoil could also be engineered to provide base flow to surfacewater reservoirs. Ground-water recharge enters the spoil by way of sinking streams, ground-water flow from bedrock in contact with the mine spoil, and a specially designed infiltration basin. Ground water discharges predominantly from springs and seeps along the northwestern outslope of the spoil. A conceptual model of ground-water flow, based on data from monitoring wells, discharge from springs and ponds, dye tracing, hydraulic gradients, and field reconnaissance, indicates that ground water moves slowly in the spoil interior, where it must flow down into the valley fills before discharging out of the spoil. Two saturated zones have been established: the first in the spoil interior, and the second in the valley fills that surround the main spoil body at lower elevations. The saturated zone in the valley fills contains fresher water than the zone in the spoil interior and exhibits more water-level fluctuation because of efficient recharge pathways along the spoil’s periphery at the spoil-highwall contact. The average saturated thickness of the valley fill areas (30.1 ft) is approximately twice the average saturated thickness found in the spoil’s interior (15.4 ft). Spatial water-quality variations are consistent with those predicted in the proposed flow system. Based on an estimated average saturated thickness of 21 ft for the entire site, the saturated spoil stores 4,200 acre-ft (1.4 billion gallons) of water. Hydraulic-conductivity (K) values derived from slug tests range from 2.0 × 10-6 to more than 2.9 × 10-5 ft/sec, and are consistent with hydraulic-conductivity data for other spoil areas where similar mining methods are used. Water samples taken from wells and springs indicate that the ground water is a calcium-magnesium-sulfate type, differing mainly in the total concentration of these constituents at various locations. Mineral saturation indices calculated using the geochemical model PHREEQE indicate that most of the ground water is near equilibrium with gypsum. Nearly all the water samples had pH measurements in a favorable range between 6.0 and 7.0, indicating that the spoil does not produce highly acidic water. Measurements of vertical displacement around the monitoring-well surface casings indicate that differential settlement is occurring within the mine spoil. The most rapid settlement occurs in the most recently placed spoil near the active mining pit

    Ground Water in the Kentucky River Basin

    Get PDF
    Most private wells in the Kentucky River Basin are in unconfined or semi-confined bedrock aquifers. Within these aquifers, high-yield zones are irregularly distributed. The most productive wells are drilled into fractured bedrock and alluvium along the Kentucky River floodplain. The data indicate that ground water acts as a buffer to peak and low flows in Kentucky River Basin streams. At current withdrawal rates, ground-water usage does not seem to have an adverse impact on the Kentucky River. Privately owned ground-water sources supply approximately 135,000 people living in the basin-approximately 19 percent of the total population and 36 percent of the rural population. More than 50 percent of residential water supplies in eastern Kentucky rely on ground water. If aquifers are protected from pollution by wellhead protection programs and old wells are retrofitted to prevent direct contamination, then ground water will continue to provide a reliable water supply in many rural areas of the basin. However, for most of the basin, few wells will have yields adequate to supply a large demand. Ground water from present wells will not provide an adequate supply for communities with a population of over a few thousand. Limited discharge data available for springs and large wells in the basin strongly suggest that the potential for ground water to supplement current supplies should not be ignored. Discharge from well fields and springs could be used to augment surface supplies during drought. A better understanding of the distribution and quality of ground-water resources is crucial for the citizens of the basin to fully benefit from ground water

    The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Full text link
    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ\mu-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group \Diff(\S) with a space of scalar functions on §\S we show that both equations are locally well-posed. The main result of the paper is that the sectional curvature associated with the 2HS is constant and positive and that 2μ\muHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in [J. Escher, M. Kohlmann, and J. Lenells, J. Geom. Phys. 61 (2011), 436-452].Comment: 19 page

    The geometry of a vorticity model equation

    Full text link
    We provide rigorous evidence of the fact that the modified Constantin-Lax-Majda equation modeling vortex and quasi-geostrophic dynamics describes the geodesic flow on the subgroup of orientation-preserving diffeomorphisms fixing one point, with respect to right-invariant metric induced by the homogeneous Sobolev norm H1/2H^{1/2} and show the local existence of the geodesics in the extended group of diffeomorphisms of Sobolev class HkH^{k} with k≥2k\ge 2.Comment: 24 page

    Resolvent estimates for normally hyperbolic trapped sets

    Full text link
    We give pole free strips and estimates for resolvents of semiclassical operators which, on the level of the classical flow, have normally hyperbolic smooth trapped sets of codimension two in phase space. Such trapped sets are structurally stable and our motivation comes partly from considering the wave equation for Kerr black holes and their perturbations, whose trapped sets have precisely this structure. We give applications including local smoothing effects with epsilon derivative loss for the Schr\"odinger propagator as well as local energy decay results for the wave equation.Comment: Further changes to erratum correcting small problems with Section 3.5 and Lemma 4.1; this now also corrects hypotheses, explicitly requiring trapped set to be symplectic. Erratum follows references in this versio

    Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene

    Get PDF
    Author Posting. © Annual Reviews, 2007. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Environment and Resources 32 (2007): 31-66, doi:10.1146/annurev.energy.32.041706.124700.The global carbon and climate systems are closely intertwined, with biogeochemical processes responding to and driving climate variations. Over a range of geological and historical time-scales, warmer climate conditions are associated with higher atmospheric levels of CO2, an important climate-modulating greenhouse gas. The atmospheric CO2-temperature relationship reflects two dynamics, the planet’s climate sensitivity to a perturbation in atmospheric CO2 and the stability of non-atmospheric carbon reservoirs to evolving climate. Both exhibit non-linear behavior, and coupled carbon-climate interactions have the potential to introduce both stabilizing and destabilizing feedback loops into the Earth System. Here we bring together evidence from a wide range of geological, observational, experimental and modeling studies on the dominant interactions between the carbon cycle and climate. The review is organized by time-scale, spanning interannual to centennial climate variability, Holocene millennial variations and Pleistocene glacial-interglacial cycles, and million year and longer variations over the Precambrian and Phanerozoic. Our focus is on characterizing and, where possible quantifying, the emergent behavior internal to the coupled carbon-climate system as well as the responses of the system to external forcing from tectonics, orbital dynamics, catastrophic events, and anthropogenic fossil fuel emissions. While there are many unresolved uncertainties and complexity in the carbon cycle, one emergent property is clear across time scales: while CO2 can increase in the atmosphere quickly, returning to lower levels through natural processes is much slower, so the consequences of the human perturbation will far outlive the emissions that caused them.S. Doney acknowledges support from the NSF Geosciences Carbon and Water program (NSF ATM-0628582) and the WHOI W. Van Alan Clark Sr. Chair. D. Schimel acknowledges support from the NSF Biocomplexity in the Environment program (NSF EAR-0321918)

    Plasmons in layered structures including graphene

    Full text link
    We investigate the optical properties of layered structures with graphene at the interface for arbitrary linear polarization at finite temperature including full retardation by working in the Weyl gauge. As a special case, we obtain the full response and the related dielectric function of a layered structure with two interfaces. We apply our results to discuss the longitudinal plasmon spectrum of several single and double layer devices such as systems with finite and zero electronic densities. We further show that a nonhomogeneous dielectric background can shift the relative weight of the in-phase and out-of-phase mode and discuss how the plasmonic mode of the upper layer can be tuned into an acoustic mode with specific sound velocity.Comment: 18 pages, 6 figure
    • …
    corecore