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HYDROGEOLOGY, HYDROGEOCHEMISTRY,
AND SPOIL SETTLEMENT

AT A LARGE MINE-SPOIL AREA IN EASTERN KENTUCKY:
STAR FIRE TRACT

David R. Wunsch, James S. Dinger,
Page B. Taylor, Daniel I. Carey, and

C. Douglas R. Graham

ABSTRACT

An applied research program at the Star Fire  surface mine in eastern Kentucky, owned and operated by
Cypress-AMAX Coal Co., defined spoil characteristics to develop and monitor water resources, which will
help identify a reliable water supply for future property development. Water stored in the mine spoil may
provide a usable ground-water supply, and the spoil could also be engineered to provide base flow to surface-
water reservoirs.

Ground-water recharge enters the spoil by way of sinking streams, ground-water flow from bedrock in
contact with the mine spoil, and a specially designed infiltration basin. Ground water discharges predomi-
nantly from springs and seeps along the northwestern outslope of the spoil.

A conceptual model of ground-water flow, based on data from monitoring wells, discharge from springs
and ponds, dye tracing, hydraulic gradients, and field reconnaissance, indicates that ground water moves
slowly in the spoil interior, where it must flow down into the valley fills before discharging out of the spoil.
Two saturated zones have been established: the first in the spoil interior, and the second in the valley fills that
surround the main spoil body at lower elevations. The saturated zone in the valley fills contains fresher water
than the zone in the spoil interior and exhibits more water-level fluctuation because of efficient recharge
pathways along the spoil’s periphery at the spoil-highwall contact. The average saturated thickness of the
valley fill areas (30.1 ft) is approximately twice the average saturated thickness found in the spoil’s interior
(15.4 ft). Spatial water-quality variations are consistent with those predicted in the proposed flow system.

Based on an estimated average saturated thickness of 21 ft for the entire site, the saturated spoil stores
4,200 acre-ft (1.4 billion gallons) of water. Hydraulic-conductivity (K) values derived from slug tests range
from 2.0 × 10-6 to more than 2.9 × 10-5 ft/sec, and are consistent with hydraulic-conductivity data for other
spoil areas where similar mining methods are used.

Water samples taken from wells and springs indicate that the ground water is a calcium-magnesium-sulfate
type, differing mainly in the total concentration of these constituents at various locations. Mineral saturation
indices calculated using the geochemical model PHREEQE indicate that most of the ground water is near
equilibrium with gypsum. Nearly all the water samples had pH measurements in a favorable range between
6.0 and 7.0, indicating that the spoil does not produce highly acidic water.

Measurements of vertical displacement around the monitoring-well surface casings indicate that differen-
tial settlement is occurring within the mine spoil. The most rapid settlement occurs in the most recently placed
spoil near the active mining pit.

INTRODUCTION

Even though Kentucky’s high coal production rates have
remained steady, the mining-related work force has been re-
duced approximately 33 percent since 1980. General unem-
ployment in both coal-mining areas is estimated to be 25 per-
cent because of the lack of economic development except for
mining. Economic diversification in eastern Kentucky is ham-
pered by the lack of water supplies and flat usable land. Al-

though significant areas of relatively flat land are continu-
ously being created by surface-mining operations throughout
this area, the availability of water resources to sustain indus-
trial development or agriculture remains questionable.

This study evaluates the potential development of water
resources in a thick and extensive spoil at the reclaimed site
to (1) define the hydrogeology of the site, leading to the defi-
nition of the flow system, (2) characterize the ground-water
geochemistry to create baseline data for long-term monitor-
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ing, (3) delineate temporal and spatial variation in water chem-
istry, and (4) make a preliminary evaluation of spoil settle-
ment to determine its constraints on future development. This
study will contribute to the basic understanding of the hydro-
geology and hydrogeochemistry of large spoil areas and re-
sult in baseline data and technology that may be applicable to
other reclaimed mine areas in eastern Kentucky and the Ap-
palachian coal field.

GEOLOGIC AND HYDROGEOLOGIC SETTING

The Star Fire Mine encompasses parts of Breathitt, Perry,
and Knott Counties and is located approximately 5 miles north-
east of Hazard, Ky., off the Daniel Boone Parkway (Ky. High-
way 80) (Fig. 1). Regional geology of the site is mapped on
the Noble (Hinrichs, 1978) and Vest (Danilchik and
Waldrop, 1978) 7.5-minute geologic quadrangle maps. Fig-
ure 2 is a generalized geologic column for the mine site. The
coals being mined include the Hazard Nos. 7, 8, 9, and 10, all
of which are part of the Breathitt Formation of Pennsylva-
nian age. These coals are high-volatile bituminous and range
in thickness from 3 to 7 ft. Several zones contain rider coals,
thin coal beds adjacent to the major beds, which are also
mined. The overburden consists of interbedded sandstones,
shales, siltstones, and underclays. Some units are locally cal-
careous, or may contain lenticular calcareous concretions
(Spengler, 1977). In the process of mining, backfill (spoil) up
to 300 ft thick is being created.

Weinheimer (1983) studied sandstone samples from four
cores representing the Breathitt Formation at a site approxi-
mately 3 miles from the mine. Analyses revealed the follow-
ing average component percentages (thus, the sum of the com-
ponents does not equal 100 percent): quartz, 47.0 percent;

feldspar (mainly potassium feldspar), 29.0 percent; rock frag-
ments, 11.9 percent; mica, 5.4 percent; and heavy minerals
(pyrite, siderite), 0.5 percent. The majority of the cement was
determined to be ferroan calcite. Abundant authigenic kaolinite
filled pore spaces and formed reaction rims around feldspar
grains. The occurrence of dolomite in Breathitt rocks is rare.
Shales and claystones in the Breathitt Formation contain il-
lite, kaolinite, and chlorite (Papp, 1976).

Analyses performed to obtain the initial mining permit
(Soil and Material Engineers, Inc., 1982) predicted that the
overburden should not produce acid-mine drainage problems
because of the high net neutralization potential. The high neu-
tralization potential was attributed to the abundance of car-
bonate cements in the overburden sandstones. All pre-mining
overburden analyses show a potential acidity (PA) of less than
5. PA is the acidity, expressed as equivalents of calcium car-
bonate (CaCO3), calculated from pyritic sulfur content. If PA
is less than 5, the stratum is generally considered a non-acid
producer, regardless of the neutralization potential (Sobek and
others, 1978).

Ground water is stored in the unmined bedrock that sur-
rounds the mine. The dominant pathways for ground-water
movement are coal seams, and near-surface and regional frac-
ture systems (Kipp and Dinger, 1991; Wunsch, 1992).

GROUND-WATER CONSIDERATIONS

AQUIFER FRAMEWORK

Discussions with mine personnel and direct observation
of the mining process demonstrated that selected spoil-han-
dling techniques have produced a rock framework conducive
to the development of an aquifer within the spoil. Several

Figure 1. Location of the Star Fire Mine. DB=Daniel Boone Parkway. MP=Mountain Parkway.
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previous papers have described, in detail, blasting effects,
gravity settling and sorting, selective dumping, and compac-
tion of the spoil and the implications of these factors in con-
trolling the movement and storage of ground water at the site
(Dinger and others, 1988, 1990; Wunsch and others, 1992).
Therefore, these factors will be discussed only briefly here.

Figure 3 illustrates the transformation from the pre-min-
ing bedrock topography to the landscape resulting from the
extraction of the Hazard Nos. 7, 8, and 9 coal beds. Overbur-
den is removed by alternating episodes of cast blasting and
spoil removal by a 64-cubic-yard bucket dragline (cast blast-
ing is a process in which explosives are placed in holes drilled
along the highwall, and the rock is directionally blasted and
“cast” into the bottom of the pit; large, boulder-size chunks
of rock typically accumulate at the bottom of the spoil as a
result). The lowest coal being mined is the Hazard No. 7. The
shale bedrock remaining in place after the removal of the coal
creates a pavement that forms a relatively impermeable lower
boundary for any water that accumulates in the spoil. Figure
3b shows the continuous, coarse boulder zone created by cast
blasting the adjoining bedrock. Spoil covering the boulder
layer is placed by the dragline, electric shovels, and dumping
of large rocks by dump trucks (Kemp, 1990).

Figure 4 is a detailed cross section of the spoil; it illus-
trates the spoil structure in which various mining methods
and spoil placements are being used. Unmined valleys are

sometimes filled with durable boulders, creating a zone of
higher hydraulic conductivity, which provides subsurface
drainage for the mine (Fig. 4, feature A). The continuous
coarse boulder zone on top of the unmined bedrock (Fig. 4,
feature B) ranges from 15 to approximately 30 ft in thickness
and usually consists of the underburden of the Hazard No. 9
coal. This spoil is cast-blasted into the open pit after the No.
7 coal is removed. This zone, and similar boulder zones found
in valley fills, should permit the storage and rapid movement
of ground water. Because of their thick and continuous na-
ture, and their position on the bedrock floor, these zones should
be the most capable of providing and storing significant
amounts of ground water.

The spoil material cast by the dragline produces numer-
ous inclined layers of coarse aggregate above the boulder zone
(see Fig. 4, feature C). These layers are created by gravity
sorting of the spoil material when it is dumped from the drag-
line bucket: the larger, heavier rock fragments separate from
the finer material and accumulate from the bottom up along
the outer edge of each spoil cone. As mining continues, the
spoil cones and therefore the coarse layers coalesce to create
interconnected pathways for ground-water movement. These
pathways may act as recharge routes from the land surface to
the boulder zone at the base of the fill, and the finer material
at the base of the spoil cones may behave as an extensive
storage reservoir for ground water as the spoil becomes satu-
rated.

Another sequence of coarse inclined layers is also found
in the upper part of the spoil material, where spoil has been
dumped by trucks (Fig. 4, feature F). The coarse rock layers
are similar to the cast-dragline spoil, but are not as thick or as
extensive.

In contrast to the coarse permeable zones, relatively im-
permeable compacted zones are also produced by mining
within and on top of the spoil (see Fig. 4, features D, E, and
G). The final compacted graded land surface (see Fig. 4, fea-
ture G) can inhibit surface water from infiltrating into the
spoil material. Therefore, special spoil-handling techniques
have been used to capture surface runoff for recharge to the
ground-water system within the spoil material.

INFILTRATION BASIN DESIGN AND CONSTRUCTION

An infiltration basin was constructed that would create a
direct connection to the rubble zone resting on top of the No.
7 coal underburden (Fig. 4), and would lead to an understand-
ing of water movement and recharge potential of the spoil
after the infiltration basin was operational. An extensive rock
drain consisting of sandstone boulders was created to bypass
all intermediate compacted zones within the spoil that might
tend to perch percolating ground water (see Fig. 4).

Directing surface runoff into the infiltration basin can have
an additional benefit. Typically, surface-water runoff flowing
from large spoil areas contains high amounts of suspended

Figure 2. Schematic geologic column showing near-
surface coals in the study area. All units are part of the
Breathitt Formation of Pennsylvanian age. Modified from
Kemp (1990).
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Figure 3. Before- and after-mining cross sections. Inset shows location of cross sections. Modified from Kemp (1990).
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solids and sediment, which leads to sedimentation problems
in nearby streams. Surface water directed into the infiltration
basin is filtered by the porous media as it percolates down to
the saturated zone. Introducing artificial recharge through the
infiltration basin may help minimize sedimentation problems
in streams surrounding the mine site. Sediment will most likely
still have to be removed from the bottom of the infiltration
basin, however.

WATER MONITORING

METHODS

Methods used to characterize the hydroge-
ology of the spoil include precipitation mea-
surements, discharge measurements of streams
and springs, ground-water dye tracing, water-
level measurements from monitoring wells, fall-
ing-head slug tests, and water-quality analyses.

Figure 5 shows the locations of a precipita-
tion gage, a discharge flume, monitoring wells,
and a stilling well around the periphery of the
infiltration basin. The stilling well consists of a
pressure transducer to measure water stage in-
stalled within a length of PVC well casing that
descends to the bottom of the basin. Daily pre-
cipitation data have been recorded at the site
with a tipping-bucket device equipped with a
pulse recorder and data logger. The flume and
stilling well measure discharge and stage, re-
spectively, by converting direct head measure-
ments collected by digital data loggers. The digi-

tal data loggers record data from pressure trans-
ducers.

SURFACE-WATER FLOW

MEASUREMENTS

Surface-water flow was measured at re-
charge and discharge points at the site. Flow
measurements were made using a hand-held
meter and summing the flow-velocity readings
taken at even increments along a cross section
of the stream channel. This method yields a
maximum accuracy of within 5 percent of ac-
tual discharge (U.S. Geological Survey, 1980).
The total mine outflow was measured at a flume
located below the sediment-pond discharge. The
flume was equipped with digital stage record-
ers, and discharge was determined by establish-
ing a rating curve based on stage levels. Mass
balance was calculated to determine missing
components of flow, using surface-water flow

data and flume measurements.

MONITORING WELLS

Monitoring wells were installed to study the establishment
and fluctuations of a water table in the spoil, characterize the
ground-water quality, determine the effectiveness of the deep
infiltration basin, and determine the hydraulic properties of
the spoil. Installation of monitoring wells in deep spoil was

Figure 5. Schematic diagram showing the location of monitoring wells
and instruments near the deep infiltration basin.
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haul road. F=truck-dumped spoil. G=final graded land surface.
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hampered by heterogeneity of the spoil, which contains par-
ticle sizes ranging from clay to large sandstone boulders; lack
of consolidation and spoil instability; and slump and collapse
in the saturated zone.

The locations of monitoring wells at the site are shown in
Figure 6. Three methods of monitoring-well installation
were attempted at the site; each succeeding drilling episode
contributed to an ultimately successful design that maintained
well integrity in the dynamic subsurface environment of the
thick mine spoil. Monitoring well (MW) 1 was drilled using

the cable-tool method. Problems with this technology were:
unsuccessful attempts to drive steel casing to prevent collapse
of the spoil, loss of borehole integrity when the drill bit en-
countered the saturated zone, and extremely slow drilling rate.

Monitoring wells 2 and 3 were drilled using an air-rotary
method, in which a welded steel casing was driven into the
spoil behind the advancing drill bit to prevent collapse. This
method required pulling the drilling rods out in order to drive
in the surface casing and weld on additional sections. Once
the casing was installed, the production screen and pipe were
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lowered into the hole. A gravel pack was placed around the
screen while the steel surface casing was pulled back. Wells 2
and 3 were completed with 4-inch-diameter, flush-joint, sched-
ule-40 PVC pipe. We subsequently discovered that settlement
and shifting of the spoil caused failure and rupturing where
the plastic casing was unprotected.

The third monitoring well design utilized an air-rotary drill-
ing rig equipped with a pneumatic-hammer, under-reaming
drill bit with a hardened steel collar that expands as the ham-
mer rotates below an advancing steel casing. The steel casing
was simultaneously driven as the drill bit advanced. The pro-
tective casing was left in the hole for increased well integrity
after an initial pullback to expose the well screen and install
the gravel pack. Two-inch-diameter, schedule-40 stainless-
steel screens were attached to schedule-40 PVC production
pipe, creating a “hybrid” monitoring well (Fig. 7). The PVC
pipe was encased within the steel protective casing; thus, all
external monitoring-well materials in contact with spoil ma-
terial were made of steel. The annular space between the steel
protective casing and the PVC pipe was filled with bentonite,
which allowed for slight plastic deformation of the produc-
tion pipe as a result of spoil settlement and adjustment.

A total of 11 monitoring wells (wells 4 through 14), rang-

ing in depth from 54.7 to 239.0 ft, were installed as illus-
trated in Figure 7, using the under-reaming bit. Various moni-
toring wells were equipped with continuous data loggers to
record changes in the water table for extended periods of time.

SLUG TESTS

Falling-head slug tests determined the spatial distribution
of hydraulic conductivity and the range of variability within
the spoil. Nine tests were performed by injecting ground wa-
ter derived from the spoil as quickly as possible into the moni-
toring wells until the water level reached the top of the plastic
casing. Usually, the well casing was filled with water in less
than a minute. An equilibrium water level was maintained
while any trapped air bubbles were allowed to escape from
the water column. The instantaneous drop in head when the
water flow was cut off was recorded by a submerged pressure
transducer that stored the head data on a digital data logger.
This technique is based on methods first described by Hvorslev
(1951) in the development of “time-lag” permeability tests.
Hvorslev’s method assumes that instantaneous changes in
water level occur at the initiation of a slug test, which was not
the case in this study. Even under ideal conditions, Hvorslev’s
method is not precise. However, it is generally considered an
appropriate means of estimating the order of magnitude of
hydraulic conductivity (Thompson, 1987).

Hydraulic-conductivity values were calculated using the
computer program TIMELAG (Thompson, 1987). This pro-
gram contains several cases that are employed depending on
the well-configuration data provided. Unconfined aquifer
conditions were assumed.

In some cases, wells took more water than could be in-
jected by the pump (50 gallons per minute [gpm]). In these
wells, the hydraulic conductivity calculated represents a mini-
mum value based on a water-injection rate of 50 gpm. The
static head level used for calculations was the maximum head
level (top of casing) for each well, which provided for a mini-
mum hydraulic conductivity value that would sustain the maxi-
mum flow rate. Actual hydraulic conductivity values must be
higher than these calculated values.

WATER-QUALITY SAMPLING AND ANALYSIS

Samples were collected to determine the chemical charac-
ter of the surface and ground water at the site, provide input
data for geochemical models and mass-balance studies, and
establish baseline data in order to monitor temporal and spa-
tial variability in water quality. Samples were drawn and ana-
lyzed from the largest spoil spring, monitoring wells, the
stream in Chestnut Gap Branch (see Fig. 6), and the deep
infiltration basin. All wells were sampled quarterly be-
ginning in the spring of 1991; this sampling scheme will con-
tinue as funding permits. Some samples were taken from
springs and streams to study recharge events. Field param-
eters determined for most samples were temperature, specific

Figure 7. Design for monitoring wells 4 through 14.
Drawing not to scale.
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electrical conductance, oxidation-reduction potential (Eh), and
pH in accordance with U.S. Geological Survey (1980) guide-
lines for sampling and collecting. Data were collected utiliz-
ing a flow-through cell that was closed to the atmosphere.
Under these conditions, Eh measurements and subsequent
qualitative interpretations of the redox conditions in natural
waters could be made (Langmuir, 1971; Champ and others,
1979). Water flow to the cell was provided by a 2-inch-diam-
eter submersible pump, which was used for purging and sam-
pling of the monitoring wells. Laboratory analysis of water
samples determined 30 total and dissolved metal concentra-
tions and major anions.

DYE TRACING

Ground-water dye traces defined flow paths and travel
times through the spoil. Dye-trace data from previous studies
(Kemp, 1990) were also used to define ground-water flow
paths in the Spring Gap drainage area. The dye used for all
tracing was Rhodamine WT, a fluorescent dye. It has been
widely used in the study of karstic carbonate aquifers, and to
a lesser extent in granular aquifers (Aulenbach and others,
1978). Rhodamine WT exhibits many properties favorable
for ground-water tracing, including detectability at very low
concentrations (parts per billion), low toxicity, a distinct peak-
emission wavelength, chemical stability over a wide range of
pH values, photochemical and biological stability, and a low
rate of adsorption (Smart and Laidlaw, 1977). The most criti-
cal of these factors for this study is its low rate of adsorption,
because the dye is assumed to flow through an aquifer matrix
rich in clays, organic-rich shales, and ferric hydroxide. Ferric
hydroxide was found to adsorb significant quantities of
Rhodamine WT in an experiment designed to test fluorescent
dyes for use in ground-water tracing in underground coal
mines (Aldous and Smart, 1987). Therefore, ample amounts
of dye were used to allow for dilution and adsorption.

Dye traces determined the flow path of water entering the
spoil through the deep infiltration basin, Chestnut Gap Branch
(a stream that flows into the base of the spoil), and MW 1,
which is located in the central area of the spoil (Fig. 6). The
flow path of ground water injected with dye at these loca-
tions was determined by placing dye detectors, which con-
sisted of permeable textile sacks filled with activated char-
coal, at various points of discharge. The elutriant, or solution
used to desorb dye from the charcoal detectors, was analyzed
with a Turner model 10 filter fluorometer1.

SPOIL-SETTLEMENT MEASUREMENTS

Spoil visibly settled around the monitoring wells that were
installed in July 1990. There was vertical displacement be-
tween the cement surface seal placed during monitoring-well

construction and the surface of the spoil. The spoil was not
monitored immediately after the well’s emplacement; there-
fore, settlement could only be assessed for the period after
well installation. The displacement between the cement seal
and the spoil surface were calculated for each well by making
baseline measurements in the four compass directions around
the seal of each well. The settlement values were then mea-
sured in each direction, and an average value from the four
measurements was calculated to represent the spoil settlement
at each well. Figure 8 shows an example of surface settle-
ment at MW 4.

RESULTS AND DISCUSSION

RECHARGE OBSERVATIONS

Field reconnaissance of the study area revealed numerous
places where streams and storm runoff recharge the spoil aqui-
fer. Recharge at most of these sites is sporadic and often dif-
ficult to quantify.

Several streams flow directly into the spoil at the base.
The largest is Chestnut Gap Branch, a first-order stream with
a watershed area of 0.32 mi2 (see Fig. 6). Data from Kemp
(1990) show that Chestnut Gap Branch had an average flow
rate of 0.73 cubic feet per second (cfs) during a 3-month pe-
riod in 1989, which equates to a 0.47 million gallons per day
(mgd) contribution to the total water moving through the spoil.

Recharge from bedrock aquifers occurs where mine
highwalls are in contact with the spoil. Although primary
permeability is relatively low in the non-coal bedrock form-
ing the highwall (Wunsch, 1992), near-surface and tectoni-
cally induced fractures provide highly permeable zones that
discharge ground water into the spoil (Kipp and Dinger, 1991).

In some cases, spoil handling resulted in boulders being
randomly exposed at the surface. Small (less than 5 cm in
diameter), discrete infiltration points, or “snakeholes,” were
observed where boulders intersect the spoil surface. Storm
runoff flows into these discrete holes and rapidly disappears
into the spoil. The amount of water that may ultimately reach
the saturated zone at the bottom of the spoil by way of these
discrete points has not been determined, but is assumed to be
minimal compared to the amount of water entering the spoil
along the edges of the main spoil body.

Aside from the few discrete infiltration points just de-
scribed, infiltration through the spoil surface does not account
for a significant amount of recharge because of the compacted
nature of the graded spoil. Drilling and excavation have shown
that the spoil is dry within a few inches of the surface, and a
thin sheet of mud quickly forms on the surface after a storm,
which indicates that rainfall does not easily infiltrate the spoil.
Limited data from a single percolation test performed in the

Hydrogeology, Hydrogeochemistry, and Spoil Settlement at the Star Fire Tract
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vicinity of MW 4 support this observation. The data reveal a
very low infiltration rate (0.186 inch/hour) for water entering
the spoil through the graded, compacted surface.

On a larger scale, the infiltration basin provides a point
source for ground-water recharge. At the present time, the
watershed that supplies the basin is limited, and probably
contributes relatively insignificant quantities of water in rela-
tion to the total amount stored in the spoil. The present water-
shed surrounding the basin encompasses approximately 18
acres, less than 2 percent of the total spoil area.

Recharge also occurs when precipitation falls directly on
ungraded dragline-cast spoil cones or other recently excavated
areas. We assumed the infiltration rate in these areas was higher
than the rate in the compacted spoil, but have not determined
quantitative recharge rates. The size of this spoil cone area
varies depending on the amount of grading that has occurred,
but is extensive, often 2 million ft2 or larger (Dinger and oth-
ers, 1988).

SPRING DISCHARGE

The most significant area of discharge from the spoil is in
the northwest corner, where a group of three springs is lo-
cated at the toe of the Spring Gap Branch valley fill (Fig. 6).
The springs appear at an elevation of approximately 1,040 ft.
The discharge point for the largest of the springs (spring 1) is
located at the toe of a 130-ft-thick truck-dumped sandstone
spoil that overrides a 45-ft-thick truck-dumped shale spoil.
The shale spoil is purported to have a lower permeability than
the sandstone spoil (Kemp, 1990). During times of extremely
high discharge, a number of small springs have been observed
along the toe of this lift at an elevation equivalent to or slightly
higher than the main spring. Total discharge from the springs
ranges from approximately 1 to 5 mgd (Kemp, 1990).

Discharge was not observed from the toe of the Long Fork
valley fill. Mine personnel observed ground water discharg-
ing directly into the sediment pond at a point below the pond’s
water level.

Ground water also discharges from the spoil into the ac-
tive dragline pit when the pit is at the level of the No. 7 coal.
At times, ground water has discharged from the spoil into the
active pit at a rate high enough to require pumping on a daily
basis. On occasion, pumping rates have reached an estimated
360,000 gpd.

Two ponds have been created to store water for dust con-
trol. These ponds, whose locations are shown on Figure 6,
are at the northwest corner of the spoil, above the springs.
The bottom of the northern pond is on the underclay below
the Hazard No. 7 coal. The bottom of the southern pond has
been excavated to a lower elevation and is completed within
the shale unit below the No. 7 coal and the underclay. Both
ponds are fed by water from the saturated spoil, as evidenced
by the fact that the water level in the northern pond (1,125 ft),
which has no overflow, is very similar to the water level ob-

Results and Discussion

Figure 8. Settlement of the mine-spoil surface, as
indicated by the movement of the cement surface seals.

July 1990

July 1992
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served in the nearest monitoring well not located over a val-
ley fill (1,130 ft in MW 8). This similarity suggests that the
pond is a surface expression of the water table. Also, although
these ponds are pumped to fill 10,000-gallon water trucks,
the water is never depleted, and the ponds do not freeze in the
winter, which suggests a ground-water source. Finally, the
electrical conductance (2,100 microsiemens) of the water
flowing out of the overflow is similar to that of the spoil-fed
springs that discharge below it (Kemp, 1990); if the ponds
received their water from surface runoff, the conductance
values would be much lower because of dilution. Water over-
flows from the lower pond throughout the year and cascades
down the spoil face by way of a riprap-lined drainage chan-
nel and contributes to the total mine outflow.

A large-capacity flume below the sediment pond gages
the total water outflow (see Fig. 6 for location). Data have not
been continuously collected because of periods of freezing
and vandalism, but data were collected on 255 days of the
1992 water year. Table 1 shows the discharge data for several
months during the 1992 water year. The monthly mean dis-
charge ranges from 3.08 to 6.95 cfs (2.0 to 4.5 mgd). The
mean and median discharge are both approximately 4 cfs (2.6
mgd).

MASS-BALANCE  CALCULATIONS

Mass balance was calculated to determine what part of the
total mine outflow is provided by the spring that drains the
Long Fork valley fill. The spring discharges below water level
in the sediment pond at the northwest corner of the spoil,
making it impossible to take direct flow measurements or
collect water samples (Fig. 6). Flow measurements at all other
accessible discharge points were made in June 1994 after a
relatively dry spell when streams and springs were consid-
ered at base flow. The flow components used in the calcula-
tions consisted of the Long Fork flume, spring 1 (SP 1), Chest-
nut Gap Branch, and the dust-control pond’s overflow (see
Fig. 6). The cumulative flow for all components was deter-
mined by the formula:

Qt=Qpo+ Qcb+ (Qsp– Qcb) + Qlf

where
Qt=measured total mine discharge at the Long Fork flume
Qpo=measured discharge of the overflow from the dust-

control pond
Qcb=measured discharge from Chestnut Gap Branch
Qsp=measured discharge at the Spring Gap spring
Qlf=calculated discharge from the Long Fork spring.

The discharge from Chestnut Gap Branch was subtracted from
the discharge from Spring Gap because Kemp (1990) dem-
onstrated by dye tracing that the total streamflow in Chestnut
Gap Branch disappears into the base of the Spring Gap valley
fill and re-emerges at spring 1. Thus, it contributes to the flow
measured at spring 1. The measured discharge for each site,
in cfs, is as follows: Qt=2.23, Qpo=0.84, Qcb=0.20, Qsp=0.63.
The flow contribution from the Long Fork drainage (Qlf) is
therefore 0.76 cfs.

Mass balance for the total dissolved solid (TDS) load was
calculated to determine if the mass loads were consistent with
the discharge data. We could not collect a representative wa-
ter sample from the submerged Long Fork spring. However,
MW 10, located approximately 800 ft upgradient from the
reported spring discharge site, produces water that is prob-
ably representative of the water moving through the Long
Fork buried valley, which is the source of the water that dis-
charges from the Long Fork spring. In addition, the coeffi-
cient of variation for TDS values from MW 10 is 14 percent
(Appendix A), which indicates that the data are consistent.
We therefore used the TDS value from MW 10 in the mass-
balance calculations.

TDS data for the flow components were determined from
samples collected in June 1994, except for the sample from
MW 10, which was collected in August 1994 (see Appendix
A). The mass-balance formula used in the calculation was:

QtCt=QpoCpo + QcbCcb + QspCsp + QlfClf

where
Ct=TDS determined for water from the Long Fork flume
Cpo=TDS of the overflow from the dust-control pond
Ccb=TDS of the discharge from Chestnut Gap Branch
Csp=TDS of the discharge at the Spring Gap spring
Clf=TDS of the Long Fork spring.

Hydrogeology, Hydrogeochemistry, and Spoil Settlement at the Star Fire Tract
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TDS for water derived from the Long Fork spring was deter-
mined by the formula:

C
Q C Q C Q C Q C

Qlf
t t po po cb cb sp sp

lf
=

− + +( )

The discharge value for SP 1 is 0.43 cfs, which is the mea-
sured discharge (0.63 cfs) minus the recharge component sup-
plied from Chestnut Gap Branch (0.20 cfs). Solving for Clf
yields a TDS value of 2,082 mg/L. The TDS of the water
sample from MW 10 was 2,113, which is in excellent agree-
ment with the calculated value (a difference of less than 1.5
percent). Moreover, the consistency of the mass-balance cal-
culations suggests that the measurements for discharge sites
and the calculated discharge for the submerged spring drain-
ing the Long Fork valley fill are reasonable. These calcula-
tions show that almost all the total mine outflow can be ac-
counted for by a summation of the ground-water discharge
sites located in the northwestern area of the main spoil body.

DYE TRACING

Kemp’s 1990 dye trace delineated a flow path between
where the Chestnut Gap stream disappears into the spoil and
spring 1, located at the northwest corner of the spoil (see Fig.
6). Kemp (1990) also determined an apparent velocity rang-
ing from 0.014 to 0.009 ft/sec based on a straight-line travel
distance of 2,400 ft and a travel time between 49 and 73
hours. Chestnut Gap Branch contains high levels of suspended
sediment after storms, but the consistently clear discharge at
spring 1 indicates that sediment in surface water in Chestnut
Gap Branch is filtered by flowing through the spoil. This sug-
gests that directing surface runoff from large spoil bodies
through the spoil itself could be an effective technology for
treating sediment problems in areas where the mineralogy of
the overburden does not create significant acid mine-drain-
age problems.

A second dye trace by Kemp in 1990 injected dye with a
1,000-gallon slug of water into MW 1 (see Fig. 6). This dye
was not recovered in the springs in the northwest corner of
the spoil. The dye may have flowed northeast into the Long
Fork drainage, but there were no adequate discharge points
along this flow route to monitor for dye. Dye was still visible
in MW 1 several months after it was introduced, indicating
that ground-water movement is sluggish in the vicinity of MW
1. The slow movement of ground water in the vicinity of MW
1 and the lack of dye emerging from the springs also suggests
that a low-permeability barrier may exist; or, ground-water
movement may be very slow between the interior spoil area
and the lower elevation valley-fill areas that encompass the
Spring Gap, Chestnut Gap, and Long Fork drainage valleys.

Additional dye tracing in the spring of 1991 determined
the flow path of recharge that enters the spoil through the
infiltration basin. Dye detectors were set at several locations

that were suspected as possible emergence areas for water
entering the infiltration basin. Figure 9 shows the locations
of the dye detectors. Three positive traces were detected west
of the infiltration basin. These results are consistent with the
direction of flow indicated by hydraulic gradients and basal
topography in this area. One positive trace was also found in
a pit excavated along the highwall-valley fill contact near
MW 6. Additional positive traces were found where water
periodically flowed from the spoil slope between the elevation
of the infiltration basin and the valley fill near MW 6. This
indicates that not all of the water that flows into the infiltration
basin penetrates vertically to the base of the spoil; it may be
diverted laterally by low-permeability barriers within the spoil.
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The permeability barrier may be created by the spoil-handling
techniques that were discussed previously (see Fig. 4), or from
sediment clogging the rock chimney (Fig. 4).

Residual dye in MW 1 from Kemp’s 1990 dye trace may
have contributed to the positive 1991 tests; MW 1 is located
near the infiltration basin (see Fig. 6). The infiltration basin is
situated between MW 1 and where the positive dye traces

were found, however, so movement of ground water is to-
ward MW 6, whether the dye originated from residual dye
from the 1990 trace or from the 1991 infiltration-basin test.

GROUND-WATER OCCURRENCE

Figure 10 shows the outline of the spoil area, along with
the contoured surface of the now-buried bedrock topography.
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This map was created by combining the pre-mining topo-
graphic map of the mined area and a structure-contour map
on the base of the Hazard No. 7 coal, which is the lowest coal
being mined. The bottom surface of the spoil’s interior is a
gently undulating plateau capped by the shale that underlies
the No. 7 coal. This buried plateau is bordered by the pre-
existing stream drainage (shaded areas on Fig. 10) formed by
Long Fork to the northeast and Spring Gap/Chestnut Gap
Branch to the southwest. Elevation drops considerably from

the plateau level to the bottom of the old stream drainages.
Maximum relief (approximately 130 ft) occurs in the north-
west corner of the spoil, where the two buried drainage val-
leys converge around the nose of the plateau.

A contour map of the water table within the spoil (Fig. 11)
was created from water-elevation data collected in June 1991
from the 14 monitoring wells on the site, the dust-control
pond, and spring 1. There is a slightly mounded water table
in the central plateau region, as demonstrated by the closed
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1,300-ft contour line in the center of Figure 11. The water
mound is probably a reflection of the spoon-like shape of the
mine floor, as shown in Figure 10.

The water-table mound shown in Figure 9 also indicates a
low hydraulic gradient in this area. For example, the gradient
between MW 9 and MW 13 is 0.0019. The gradient of the
water table in the surrounding buried valleys is much higher:
the gradient between MW 6 and MW 7 in the Spring Gap
valley fill is 0.025, more than 10 times the gradient between
the plateau wells.

Steep gradients are also evident between the northwestern
area of the plateau and the surrounding buried valleys, which
parallel the elevation differences indicated by the buried to-
pography (see Fig. 10). These steep gradients seem unrealis-
tic, and probably represent a boundary between two distinct
but interconnected saturated zones.

The distribution of water within the spoil is illustrated in
Figure 12, which is a cross section of the spoil through moni-
toring wells 7, 8, 9, and 13 along line A–A� (location shown
on Fig. 6). There are two saturated zones: one relatively shal-
low zone perched on the buried plateau, and the other in the
valley fill of the Chestnut Gap Branch drainage. The differ-
ence in elevation between the buried plateau and the valley
bottoms decreases toward the southeast, where the elevation
of the valley bottoms gradually rises toward the heads of the
valleys. The saturated zones are probably directly connected
in the heads of the valleys, where the buried valleys intersect
the base of the plateau. The spoon-like shape of the interior
basal plateau suggests that the bedrock along the edges of the
plateau may form barriers that retard ground-water movement
into the valley, where the difference in elevation is greater.
This interpretation is supported by the dye-tracing data, which
show that water movement is restricted in the interior of the
spoil. The water levels in wells on the north side of the spoil
suggest a similar configuration in the Long Fork valley fill.

The apparent lack of hydraulic continuity and the low hy-
draulic gradient in the plateau region suggest that the major-
ity of ground water moving through the spoil flows through
the two buried valleys before finally discharging in the north-
west corner of the spoil. This conclusion is also supported by
the dye-trace data, which show that water moves through the
buried valleys at high velocities.

The occurrence of water in each well in the spoil indicates
that a significant amount of ground water has accumulated.
Table 2 compares the saturated-thickness data for the five wells
located in the valley fills with the eight wells located over the
spoil’s interior (buried plateau). Based on the June 1991 wa-
ter levels, the mean saturated thickness for the valley-fill wells
(30.1 ft) is approximately twice the mean value (15.4 ft) for
the wells located over the spoil’s interior. The greater satu-
rated thickness in the valley fills may be the result of low-
permeability spoil at the mouths of the valleys retarding drain-
age from the valley fills and allowing for the accumulation of
water (Kemp, 1990). In addition, the lower elevation of the
valley bottoms, and constriction of flow because of the V shape
of the incised, pre-mining valley, compared to the relatively
flat bottom of the No. 7 coal underlying the plateau region,
may also be factors. The increase in recharge along the edge
of the spoil in the valley fills, in contrast to the lack of direct
recharge over the main spoil body, may also contribute to the
difference in saturated thickness.

Based on an average saturated thickness of 21 ft for all
spoil wells, and assuming an estimated porosity of 20 per-
cent, approximately 4,200 acre-ft (1.4 billion gallons) of wa-
ter is stored within the existing 1,000 acres of reclaimed spoil.
Diodato and Parizek (1994) found that the porosity of mine
spoil ranged from 30.1 to 57 percent in shallow, unsaturated
boreholes, but because of the thick spoil, compaction, and
saturated conditions at the Star Fire site, the 20 percent po-
rosity estimate used here seems appropriate.

Hydrographs for the monitoring wells reveal some impor-
tant facts about the ground-water system. Fig-
ure 13 shows the daily water-level averages for
monitoring wells 6, 9,  and 11. These data were
collected using digital data loggers. Water level
gradually increased in each well from May 16,
1991, through June 19, 1991. Wells 9 and 11,
which are located in the interior of the spoil,
exhibited a steady, gradual rise in water level,
while MW 6’s water levels fluctuated erratically,
in a pattern that closely paralleled the precipita-
tion during the observation period. The net rise
in water level for MW 6 is similar to the ap-
proximately 1 ft increase exhibited by wells 9
and 11 during this period.

MW 6 is located near a bedrock highwall that
resulted from contour-cut mining in this area dur-
ing the 1950’s. The rapid response to precipita-
tion in MW 6 is most likely caused by surface
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runoff quickly entering the spoil along the con-
tact of the spoil and the bedrock valley wall and
by ground water entering the valley fill from
the bedrock in contact with the spoil.

Similar responses to precipitation are also
seen in the hydrographs for well 7 (Fig. 14) and
wells 9 and 14 (Fig. 15) from December 1993.
Each well had a net increase in water level dur-
ing the period. However, the hydrographs for
valley-fill wells 7 and 14 indicate that these wells
are much more responsive to precipitation than
well 9. The increase in water levels following
recharge in wells 7 and 14 is probably caused
by the same recharge mechanisms described for
MW 6.

In summary, the hydrographs for wells 9 and
11 show a relatively smooth response to pre-
cipitation, suggesting that the interior of the spoil
does not obtain ground-water recharge as readily
as the spoil in the valley fills located near the
periphery of the spoil (wells 6, 7, and 14). The
thickness of the saturated zone in the spoil is a
function of the elevation of the bedrock aquitard
below the spoil and other barriers to ground-
water flow. Generally, the higher the bedrock
surface elevation, the thinner the saturated zone.
In the valley-fill areas the saturated zone is influenced by the
pre-existing surface topography of the unmined areas.

SLUG TESTS

Falling-head slug tests were performed in nine monitor-
ing wells at the site during the fall of 1992. The results of the
tests are shown in Table 3. The hydraulic conductivity (K)
values ranged from 1.0 × 10-6 to greater than 2.9 × 10-5 ft/sec.
These values are comparable to K values for silty sand (Freeze
and Cherry, 1979), and are also consistent with hydraulic-
conductivity values determined by other studies of mines that
use similar mining methods. For example, Oertel and Hood
(1983) found K values ranging from 1.5 × 10-6 to 6.9 × 10-4

ft/sec, and Herring and Shanks (1980) found a range from 1.5
× 10-6 to 1.6 × 10-3 ft/sec.

Because some wells (5, 8, 10, and 13) were able to dis-
perse water at a rate that exceeded injection and data-record-
ing capabilities, only a minimum hydraulic conductivity could
be calculated. However, judging from the past pumping per-
formance of these wells, and keeping in mind that the flow of
water in mine spoil tends to move along discrete high-poros-
ity zones (Caruccio and Geidel, 1984), the actual K values
for these wells are probably significantly higher than the val-
ues calculated. Because there is no discernible difference in
hydraulic conductivity between the wells in the valley fills
and wells in the spoil interior, the apparently sluggish ground-
water movement in the spoil interior must be related to the
low gradients induced by recharge-discharge relationships.

INFILTRATION BASIN

The deep infiltration basin catches surface-water runoff
from an 18.9-acre catchment area. The volume of water flow-
ing into the basin for any recorded precipitation event can be
calculated by using the stage-discharge curve for runoff that
is recorded by the flume and stage recorder. The water level
of the pool that accumulates in the basin is recorded by a
pressure transducer and digital data recorder in a stilling well
(see Fig. 5).

Response of pool levels to precipitation events from May
16 through June 6, 1991, is shown in Figure 16. The response
of water entering the basin to a storm is nearly instantaneous,
indicating very rapid runoff.

Data from a storm on May 29, 1991, are given in Figure
17. The runoff passing through the flume into the infiltration
basin during this event was calculated to be 24,390 ft3 (182,000
gallons). Three hours passed before all of the water infiltrated
into the base of the basin, indicating that the average infiltra-
tion rate of the basin was 136 ft3 (1,010 gallons) per minute.

The percentage of rainfall measured as runoff for the May
29, 1991, storm was 22 percent. Data collected from 42 storms
(Appendix B) showed the percentage of runoff varied from a
low of 0.82 to a high of 34.3 percent, with an average of 11.9
percent. These data indicate that, on average, 88 percent of
precipitation either infiltrates directly into the spoil, is
transpired by vegetation, or evaporates directly from the spoil’s
surface.

Results and Discussion
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Typically, the upper few inches of spoil consists of sand-
stone or siltstone cobbles contained in a sandy, uncemented
matrix. This thin zone of spoil is capable of absorbing water
at its surface. For example, using the May 29 storm data and
assuming no evaporation, 78 percent, or 1.3 of the 1.64 inches
resulting from the storm would be available for infiltration
into the spoil’s surface. Using the lower porosity value for
shallow spoil of 30.1 percent determined by Diodato and
Parizek (1994), calculations indicate that the upper 4.3 inches
of spoil could store all of this water. A thin rind of saturated
spoil at the surface would result; this is, in fact, what we ob-
served during excavation immediately after storms (Wunsch
and others, 1992).

Three monitoring wells (2, 4, and 5) were placed around
the periphery of the basin to monitor the changes in water
levels in the spoil as a result of recharge (refer to Fig. 6 for
well locations). The water levels for these wells during March,
June, and July 1991 are shown in Table 4.

The water level in MW 4 was consistently lower than lev-
els in wells 2 and 5 by nearly 4 ft. The hydraulic gradient

implied by these measurements suggests that the water enter-
ing the basin flows in the direction of MW 4 (southwest) to-
ward the Spring Gap valley fill. Monitoring well 4 was placed
in or near one of the small drainage valleys (shaded in gray
on Figure 10) on the upper reaches of the buried Spring Gap
stream drainage. The 1,110-ft contour and surrounding inter-
vals indicate a structural low beneath the infiltration basin
that opens in the direction of the Spring Gap valley fill. The
gradient depicted by the wells surrounding the infiltration
basin and also shown by the water-level contours on Figure
11 is consistent with the dye-trace data, which show that the
Spring Gap valley fill is capturing the water infiltrating into
the spoil through the infiltration basin.

CONCEPTUAL MODEL FOR GROUND-WATER FLOW IN SPOIL

Figure 18 is a digital terrain model showing the post-min-
ing bedrock topography buried beneath the spoil and features
such as the buried plateau and the Spring Gap and Long Fork
valleys. The vantage point is the northwest corner of the spoil.
The buried bedrock topography shown here has a pronounced

Figure 13. Precipitation and well hydrographs for
monitoring wells 6, 9, and 11 from May 16 through June
19, 1991.
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monitoring well 7 for December 1993.
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effect on the occurrence and movement of ground water in
the spoil.

Figure 19 shows several features and ground-water flow
directions superimposed on an aerial photograph of the north-
western part of the mine site (top photograph). The vantage
point is the same as in Figure 18. Water contained in the val-
ley fills flows toward the northwest, where it discharges at
springs. Water that accumulates in the southeastern part of
the spoil’s interior flows toward the heads of the buried val-
leys, which are now valley fills. This is evidenced by dye-
trace data, head data, and the bottom structure of the buried
plateau. Some of the water in the spoil’s interior discharges
to ponds situated above the springs on the northwest face.
These points of discharge are illustrated in the bottom photo-
graph of Figure 19, an aerial photograph with a close-up
view of the northwest face of the spoil. Water entering the
spoil through the infiltration basin (not within view in either
photograph in Figure 19) probably flows into Spring Gap, as
previously indicated by the dye-trace and head data from the
wells surrounding the basin. The pond water, in turn, flows

down the face of the spoil, where it joins with the spring dis-
charge before entering the lowermost sediment pond (Fig.
19, top photograph).

Mass-balance calculations indicate that the amount of water
contributed by the pond overflow to the total mine outflow
(0.86 cfs) is less than the amount of water that discharges
from the valley fills (1.39 cfs). Water recharging the buried
Spring Gap and Long Fork valleys is supplied from (1) ground
water derived from bedrock along the valley fills at the spoil-
bedrock contact, (2) surface-water seepage along the spoil-
bedrock contact, and (3) the capture of ground water from the
spoil’s interior in the southeastern part of the spoil.

Figure 20 is a map of the spoil body; the arrows indicate
the assumed direction of ground-water flow. It represents a
conceptual model of ground-water movement through the
spoil.

In this model the majority of water moves through the val-
ley fills around the main spoil body and discharges at the north-
west corner of the spoil. Recharge enters the spoil mainly
along the edges of the valley fills, and at discrete points on
the reclaimed surface, which includes the infiltration basin.

HYDROGEOCHEMISTRY

WATER-MINERAL REACTIONS

The mineralogy of the overburden plays an important part
in determining chemical evolution of ground water in mine
spoil. In addition, the mining process exposes unweathered
mineral surfaces and increases the potential reactive surface
area. Several dominant chemical reactions occur in almost all

Figure 15. Hydrographs for monitoring wells 9 and 14
for December 1993.
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geologic terranes that contain coal, and these reactions have a
great impact on the major dissolved constituents in ground
and surface water (Williams and Hammond, 1988).

High concentrations of sulfate in ground and surface wa-
ter are often associated with coal mining. The most probable
source of sulfate in eastern Kentucky is from the oxidation of
iron sulfide minerals. Both pyrite and marcasite are common
iron sulfide minerals in the Appalachian coal field (Powell
and Larson, 1985). Sulfate-bearing minerals such as gypsum
(CaSO4·2H2O) are not common primary minerals in the rocks
of eastern Kentucky; therefore, the dissolution of gypsum
probably is not a major source of sulfate.

Generally, the oxidation of pyrite can be represented as
follows:

2FeS2 + 7O2 + 2H2O ®  2Fe2+ + 2H2SO4 + 2SO4
2-

Additional excess acidity can be generated if conditions within
the spoil are conducive to the establishment of a population
of iron-oxidizing bacteria such as Thiobacillus ferrooxidans
(Singer and Stumm, 1970), which catalyze the reactions that
produce acid-mine drainage. The resulting sulfuric acid solu-
tion can react with carbonate minerals (e.g., calcite), result-
ing in the neutralization of the acid and the release of calcium
and sulfate, along with an increase in bicarbonate. The net
reaction is as follows:

2CaCO3 + H2SO4 ®  2HCO3
- + 2Ca2+ + SO4

2-

Dolomite is rare in the rocks of the Breathitt Formation
(Danilchik and Waldrop, 1978; Weinheimer, 1983), and there-
fore the dissolution of this mineral probably does not con-
tribute magnesium, which is found in significant concentra-
tions in the spoil’s ground water.

Chlorite ((Mg,Fe)6(AlSi3)O10(OH)8) is common in
Breathitt rocks (Papp, 1976; Weinheimer, 1983), and it may
be a significant source of magnesium in ground water (Hem,
1985). The weathering of chlorite is promoted by acidic con-
ditions, making this reaction likely in areas where pyrite oxi-
dation occurs (Powell and Larson, 1985).

Cation exchange is a geochemical process that may affect
the distribution of cations in ground water in contact with
mine spoil. In spoil water laden with divalent cations, the most
likely reaction is one in which the preferred divalent cations
such as calcium and magnesium are exchanged for sodium
on the surfaces of reactive clays, iron hydroxides, or organic
matter present in the spoil. The net effect is to increase the
sodium concentration relative to the divalent cations in the
ground water. The reaction is shown below, with X represent-
ing the exchange site on the solid:

2NaX + Ca2+ ®  2 Na+ + CaX

An additional reaction is the chemical weathering of sili-
cate minerals such as feldspars and clays, which tends to re-
lease alkali-metal cations, silica, and bicarbonate into solu-
tion (Freeze and Cherry, 1979; Powell and Larson, 1985).

INTERPRETATION OF SPOIL-WATER DATA

Figure 21 is a trilinear diagram in which the results of
analyses of water samples are plotted as a function of the
normalized percentage of the samples’ major cations and an-
ions. Sixty-eight water samples are represented on the dia-
gram, including all ground-water samples taken from moni-
toring wells and springs from April 1991 through June 1992.
Chemical data for each sample are listed in Appendix A. All
samples plot in the same general location on the diamond-
shaped field of the diagram, indicating that they possess the
same distribution of major ions. The dominant cations are
calcium and magnesium, and sulfate is the dominant anion.
The data shown represent four sampling events spanning 14
months, indicating that the water composition at the site var-
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ies little temporally. The most likely origin for the calcium-
magnesium-sulfate water type at the site is the oxidation of
iron sulfide minerals with the contemporaneous dissolution
of calcium carbonate. The source of the relatively high
amounts of magnesium is not well understood, but high-mag-
nesium calcite or magnesium-rich clays such as illite or chlo-
rite could be potential sources.

Figure 22 shows the distribution of pH values for all moni-
toring wells and spring 1. Most of the monitoring wells have
maximum, median, and minimum pH values greater than 6.0,
except for wells 6, 11, and 14. Overall, the majority of ground-
water samples collected at the site indicate that the mine spoil
generally does not produce highly acidic water.

Samples from MW 14 all have a pH of less than 4.5, which
represents the lowest pH measurements encountered on the
site. Samples taken from MW 14 are somewhat separated from
the other samples plotted on the trilinear diagram (Fig. 21).
The distribution of cations (mainly calcium and magnesium)
is consistent with the distributions found in other well samples,
the major difference being in the distribution of the anions. In
MW 14 the dominant ion is sulfate, but the anionic distribu-
tion differs from that of the other wells by containing very
low amounts of bicarbonate.

Water samples from MW 14 have bicarbonate contents
lower than the other water samples by approximately two or-
ders of magnitude. The range of bicarbonate concentration in
MW 14 is from 3.66 to 8.54 mg/L, and the range of bicarbon-
ate in samples from all other wells is from 185 to 1,046
mg/L.

A plausible explanation for the low bicar-
bonate level is that MW 14 collects water from
an area where the rocks contain significant
amounts of sulfide-bearing minerals and con-
ditions are favorable for their oxidation. In ad-
dition, the amount of sulfide minerals in the
vicinity of this well must be much greater than
the amount of calcium carbonate. In this case,
excess sulfuric acid would be produced, re-
sulting in low bicarbonate concentrations and
low pH.

Well 14 is located over a valley fill and is
near a recharge area where Kemp (1990) ob-
served surface water accumulating at the spoil-
highwall contact. The highest average Eh value
(mean Eh=398 millivolts [mV]; coefficient of
variation=3.3 percent) of all the wells surveyed
was observed at MW 14, and is in the Eh range
in which the oxidation of sulfides is likely to
take place (Champ and others, 1979). In addi-
tion, MW 14 is adjacent to an experimental
goose pond situated on the reclaimed spoil.
The pond has been prone to leaking, which

could supply oxygen-rich surface water to the saturated zone
monitored by MW 14. The result would be a geochemical
environment that could create the acidic water encountered
in MW 14. However, iron concentrations are lower than ex-
pected if pyrite is actively being oxidized and dissolved. One
explanation for the relatively low iron concentration could be
the contemporaneous precipitation of hydrous ferric hydrox-
ides along the water’s flow path.

Wells 4 and 7 had the highest average dissolved iron con-
tents of 39.1 and 44.1 mg/L, respectively. MW 7 is directly
downgradient from the point where Chestnut Gap Branch dis-
appears into the spoil, and MW 4 is downgradient from the
recharge water that enters the spoil through the infiltration
basin. Chemical data show that these two wells also had the
lowest average Eh measurements (213 and 159 mV, respec-
tively). These values indicate slightly oxidizing to reducing
conditions, which means conditions are more conducive for
sustaining high dissolved iron concentrations in ground wa-
ter in this area than in other areas of the spoil (Domenico and
Schwartz, 1990). The relatively low Eh conditions may be
related to the consumption of oxygen during the oxidation of

Figure 17. Relationship between flume stage and pool level during and
after the May 29, 1991, storm.
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organic matter. Both wells 4 and 7 are directly downgradient
from points of surface-water recharge that are likely to con-
tain water with more organic components than water from
other locations that flows over the relatively sterile,
unvegetated spoil. Surface water entering the spoil near MW
7 (i.e., Chestnut Gap Branch) flows through an unmined val-
ley used for cattle grazing, where organic matter from decay-
ing vegetation or from animal waste is likely to occur. The
drainage basin surrounding the infiltration basin is well veg-
etated at the time of the writing of this report compared to
most of the reclaimed spoil. Organic matter acts as a food
source for bacteria, aids in the consumption of dissolved oxy-
gen in the ground-water system, and can form organic-metal-
lic complexes. These and other processes can affect the solu-
bility and mobility of dissolved iron (Domenico and Schwartz,
1990). More chemical data are needed to confirm or discount
these hypotheses concerning water chemistry at the site.

Head distribution for wells on the periphery of the infil-
tration basin indicates that water entering the spoil through
the basin moves toward MW 4. This is substantiated by chemi-
cal data from water samples taken from wells 2, 4, and 5. The
average TDS content of the samples taken from MW 4 is 789
mg/L (see Appendix A for chemical data), which is approxi-
mately one-third the TDS values of the other wells surround-
ing the infiltration basin (MW 2 and MW 5). TDS values for
wells 2 and 5 are similar to each other (average TDS values
are 2,273 and 2,216 mg/L, respectively). The lower TDS value
in MW 4 is most likely a result of dilution by the less miner-
alized surface water entering the spoil through the infiltration
basin. A sample of water taken from the intermittent flow
that descends into the infiltration basin had a relatively low
dissolved solid content (177.8 mg/L) and a pH of 7.67. We
can reasonably assume that the majority of surface water en-

tering the basin is similar in chemistry to this sample. Unless
disturbed, the spoil exposed at the surface will become less
and less reactive because of leaching by subsequent precipi-
tation. Therefore, the low TDS values of water samples from
MW 4 probably reflect the mixing of recharge water entering
through the infiltration basin and more mineralized ground
water in the saturated zone.

The mean TDS value (see Appendix A) for wells in the
interior plateau region of the spoil (2, 3, 5, 8, 9, 11, 12, and
13) is 2,474 mg/L (standard deviation=349), whereas mean
TDS values for the valley-fill wells (4, 6, 7, 10, 14) and spring
1 is 1,414 mg/L (standard deviation=820). The higher TDS
values characteristic of the interior of the spoil are most likely
the result of longer contact time between slowly moving
ground water and reactive spoil. The extended contact time
allows for greater water-rock interaction and leaching of
soluble and reactive rock materials, which results in an in-
crease in the total concentration of the dissolved constitu-
ents.

Limited data indicate that the TDS concentration of the
water entering the spoil at Chestnut Gap Branch is generally
lower than that of the water emerging from the springs (data
from SP 1 in Appendix A) at the discharge zone. Discharg-
ing ground water from SP 1 has a TDS content nearly three
times that of the water entering the spoil at Chestnut Gap
Branch. This dramatic increase in mineralization probably
results from two main processes: (1) the recharging water,
although only in contact with the spoil material for a short
time (as evidenced by travel times determined by dye-trac-
ing), reacts with minerals in the spoil, and (2) the relatively
fresh water from the stream is mixing with the more mineral-
ized water entering the valley fills from the interior of the
spoil. Mass-balance calculations demonstrate that the mixing

Figure 18. Digital terrain model showing the bedrock topography buried beneath the spoil. Features such as the
buried plateau and the Spring Gap and Long Fork valley fills can be seen in Figure 19. Vantage point is from the
northwestern corner.
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Figure 19. Aerial photographs of the northwest corner of the reclaimed mine site.  The conceptual ground-water flow
system is superimposed on the top photograph. Ground-water discharge points along the northwest slope of the
spoil body are superimposed on the bottom photograph.
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scenario can account for the majority of the dissolved con-
stituent load measured at spring 1. For example, using the
TDS data from June 1994 and the surface-water flow data
used in previous calculations, the expression for the mass load-
ing at spring 1 is:

Q
sp
C

sp
=Q

cb
C

cb
 + Q

(sp –cb)
C

spl

where Cspl is the TDS load of water in the Spring Gap valley

fill, which would mix with water entering the spoil from Chest-
nut Gap Branch. Solving for Cspl yields a TDS concentration
of 2,378 mg/L. Monitoring well 7 is located approximately
700 feet upgradient from spring 1, and is probably a good
indicator of the TDS concentration of water originating from
the interior spoil and presently stored in the Spring Gap val-
ley fill. The measured TDS value from MW 7 is 2,740 mg/L,
and is within 13 percent of the calculated value. This example
suggests that ground-water mixing is occurring, and that mix-

Figure 20. Conceptual model of ground-water flow in the spoil at the Star Fire site. Direction of flow is uncertain near
the active mining area.
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ing is an important determining factor for water
quality in the spring. This is a reasonable inter-
pretation, considering that Kemp (1990) dem-
onstrated that travel time for water entering the
spoil at Chestnut Gap Branch and discharging
at spring 1 is less than 73 hours. This rapid rate
of water movement would limit the amount of
time for chemical reactions that increase TDS
concentrations, especially if channelized flow
controls the movement of ground water in the
spoil. Channelized, or pseudo-karstic, flow can
limit the amount of spoil-water contact that adds
dissolved solids to water moving through the
spoil (Caruccio and Geidel, 1984).

TDS data indicate that the majority of the
water leaving the site is derived from the spoil.
Based on average TDS values, wells 7 and 10,
which are closest to the flume monitoring the
mine outflow in Long Fork (see Fig. 7 for the
location), yield TDS concentrations very simi-
lar to the TDS concentration of water discharg-
ing the mine site through the Long Fork flume
(TDS values are 2,573 and 1,966 mg/L for wells
7 and 10, respectively, and 1,947 mg/L for the
flume). These data, along with the mass-balance

calculations for the total water budget dis-
cussed previously, suggest that the major
source of the water discharging from the
mine site is ground water derived from the
mine spoil. If surface-water runoff at the site
were making a significant contribution to
the total mine outflow, the TDS measured
at the outflow would be considerably less
than that observed for spoil ground water,
because of dilution. Samples of surface wa-
ter collected at other areas of the site (e.g.,
water from the stream at Chestnut Gap
Branch and water entering the infiltration
basin) have TDS concentrations that are gen-
erally less than 600 mg/L (Dinger and oth-
ers, 1990).

Table 5 gives the saturation indices (IAP/
K) calculated for several minerals that may
affect the water chemistry of the spoil
ground water. Degree of saturation is defined
in terms of the saturation index (SI):

SI Log
IAP

K
=

where IAP is the ion activity product and K
is the equilibrium constant of the mineral in
question. If the SI is less than zero, the so-
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lution is undersaturated with respect to a given mineral and
the mineral may dissolve. If the SI is equal to zero, the solu-
tion is at equilibrium. If the SI is greater than zero, the solu-
tion is supersaturated, and the mineral should precipitate from
the solution.

Saturation indices for minerals of interest were calculated
using the geochemical model PHREEQE (Parkhurst and oth-
ers, 1980). Data used in the calculations were from water
samples collected on June 16, 1992. These data were chosen
because of the high quality of the analyses: the ion charge-
balance error was less than 6.2 percent for all samples, and
the mean error for the 14 samples was 2.3 percent.

These data indicate that all water samples are undersatu-
rated with respect to pyrite, which is assumed to be the major
source of iron, sulfate, and acidity. The samples are also un-
dersaturated with respect to calcite: if present, calcite should
dissolve. Often, calcite cements in sandstones are magnesian
calcite, and the dissolution of these cements could provide
both calcium and magnesium to the ground water (Hem,
1985). Siderite (FeCO3), which is found as concretions in
shales (Danilchik and Waldrop, 1978) and as a cement in sand-
stones (Weinheimer, 1983), is undersaturated in all wells ex-
cept wells 4, 7, and 8. The dissolution of siderite would also
add bicarbonate alkalinity to the ground-water system when
it reacted with acidic water from pyrite oxidation. Powell and

Larson (1985) found chlorite to be a probable source of mag-
nesium in ground water derived from rocks that are strati-
graphically and lithologically similar to the rocks that com-
pose the overburden at the Star Fire site. The phyllosilicate
mineral chlorite is present in the overburden (Papp, 1976),
and is probably the major source of magnesium. The satura-
tion indices for chlorite indicate that this mineral is also un-
dersaturated in the spoil ground water. Thus, the equilibrium
data are consistent with this assessment.

The state of water saturation with respect to gypsum must
be considered because of the high concentrations of both cal-
cium and sulfate in the spoil ground water. Figure 23 shows
the saturation indices for gypsum for each well and spring 1.
Wells 4, 5, 6, 9, 10, 13, and 14 are all undersaturated with
respect to gypsum. Wells 4, 6, and 14 are vastly undersatu-
rated. As discussed previously, each of these three monitor-
ing wells is located in areas where direct recharge from sur-
face water is evident. Dilution by surface water is the most
likely explanation for the high degree of gypsum
undersaturation in these wells. TDS data shown in Appendix
A provide evidence for this explanation. Total dissolved solid
averages for these three wells are the three lowest values from
all wells at the site; this is probably the result of dilution with
less mineralized surface water. Moreover, the percentage dis-
tribution of cations and anions for samples from these three
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wells is consistent with that of all other ground-water samples,
which also indicates dilution.

Samples from wells 2, 3, 7, 8, 11, and 12 are saturated
with respect to gypsum. Each of these wells, except for MW
7, is located in the interior of the spoil. Wells 8 and 11 have
some of the highest TDS concentrations observed at the site
(see Appendix A). The degree of gypsum saturation in these
wells correlates well with the increased mineralization of the
ground water in the spoil’s interior.

Sodium and potassium concentrations are generally low
compared to the calcium and magnesium concentrations in
all samples. Cation exchange, therefore, is probably not an
important factor in determining the water type at the site. Other
sources for sodium and potassium may result from the weath-
ering of silicate minerals. However, the saturation indices for
kaolinite, illite, and microcline indicate saturation in most of
the samples representative of the spoil ground water. Only in
very acidic conditions should chemical weathering of these
silicates become significant. For example, very acidic condi-
tions were consistently found in MW 14, and both illite and
microcline are undersaturated, and would be expected to dis-
solve. However, the kinetics of dissolution of these minerals
is slow (Powell and Larson, 1985), and therefore their disso-
lution is probably unimportant to the overall chemistry of
ground water at the site.

SPOIL SETTLEMENT

Table 6 contains the spoil-settlement data collected in 1992
and 1993. Figure 24 shows settlement that occurred subse-
quent to well installation, measured in tenths of a foot, based

on the two data sets. A good correlation exists
between the age and thickness of spoil and ar-
eas of high settlement. The northwestern area
of the spoil has been in place the longest time:
parts of the valley fills in Spring Gap and Long
Fork have been in place for over 10 years. This
area showed the least settlement, generally 0.2
to 0.4 ft during the period of observation. The
area of maximum settlement occurred in the
southeastern part of the spoil, where active
mining is producing recent spoil. The maxi-
mum settlement that occurred between the time
of well installation (July and August 1990) and
November 1993 was 0.92 ft near MW 11,
which translates into an average settlement rate
of approximately 0.28 ft per year.

The contour lines in Figure 24 also indicate
a lobe of higher settlement in the spoil overly-
ing the buried plateau. This is the area where
the spoil is the thickest, and in some places it
exceeds 250 ft (Kemp, 1990). However, the
limited data here do not allow determination
of which variable is the most important factor

in predicting where maximum settlement will occur (age,
thickness, or subsurface geometry).

The settlement rate calculated here is based merely on an
arithmetic average of settlement per unit time. In addition,
spoil measurements did not commence with the initial place-
ment of the spoil immediately after mining. Settlement rates
for earthen materials such as mine spoil usually decrease at
an exponential rate (Charles and others, 1977). Therefore, the
amount and rate of settlement at the Star Fire site should de-
crease substantially with time. Additional study is needed.

SUMMARY

Mine spoil at the Star Fire site ranges from approximately
100 to 300 ft in thickness. Selected spoil handling techniques,
such as cast blasting, dragline casting, and dumping by trucks,
is providing a framework for water storage in the 1,000 acres
that have been mined at the Star Fire site.

Field investigations have identified numerous ground-wa-
ter recharge and discharge zones at the mine spoil area. Re-
charge occurs by way of disappearing streams, ground-water
infiltration along exposed boulder zones, and at areas where
the spoil is in contact with the bedrock highwalls. Minor re-
charge occurs locally on the spoil’s surface through
macropores (snakeholes). Discharge of ground water from
the spoil occurs mainly through springs and seeps at the
outslope of the spoil body. Ground-water movement within
the spoil is controlled by the ground-water gradients within
the spoil, which are a function of the buried topography and
the interaction of the recharge and discharge zones with zones
of low-permeability spoil. The spoil interior, lacking any major

Figure 23. Saturation indices (IAP/K) for gypsum (CaSO
4
·2H
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direct recharge from the surface, slowly accumulates water,
whereas in the valley fills ground water moves at a rapid rate.
Recharge to the valley fills comes from streams, adjacent bed-
rock aquifers, and from surface water that seeps in near the
bedrock-spoil interface.

Water-table elevations measured at monitoring wells,
springs, and ponds indicate that a saturated zone in the inte-
rior of the spoil slowly discharges to the southeast or north-
west, and that two additional saturated zones occur at lower
elevations in the two adjoining valley fills (Spring Gap-Chest-
nut Gap Branch and Long Fork). Most likely, these saturated
zones are in hydraulic connection in the upper reaches (south-
eastern part) of the spoil body, but are separated by the topog-
raphy of the basal bedrock in the central plateau section of
the spoil.

Based on an average saturated thickness of 21 ft and a
spoil porosity of 20 percent for the site, an estimated 4,200
acre-ft (1.4 billion gallons) of water exists in the 1,000-acre
spoil. The average saturated thickness of the wells located in
the valley fills (30.1 ft) is nearly twice that (15.4 ft) for the
wells located in the spoil’s interior.

The range of hydraulic conductivity values computed in
the spoil are from 2.0 × 10-6 to more than 2.9 × 10-5 ft/sec.
The upper limit of K for spoil wells could not be determined
because of equipment limitations; thus, the upper range could
be significantly higher than measured. Because there is no
discernible difference in hydraulic conductivity between the
wells in the valley fills and wells in the spoil interior, the
apparently sluggish ground-water movement in the spoil in-
terior must be related to gradients induced by recharge-dis-
charge relationships.

A deep infiltration basin instrumented at the site collects
surface runoff from the spoil. A 1.64-inch precipitation
event produced 24,390 ft3 (182,000 gallons) of runoff, which
entered the spoil through the infiltration basin at an average
rate of 136 ft3 (1,010 gallons) per minute. The head distribu-
tion measured in monitoring wells around the infiltration ba-
sin indicates that the water entering the basin is flowing to-
ward the Spring Gap valley fill and most likely discharges
from the springs in the northwestern part of the spoil.

Chemical analysis of samples from monitoring wells and
springs shows that all waters at the site are a calcium-magne-
sium-sulfate type. The pH of all ground-water samples, ex-
cept for those from MW 14, fell into a favorable range of
approximately 6 to 7. The TDS values for wells located in the
spoil interior are higher than the average value for wells lo-
cated in the valley fills. Higher mineralization of the water
samples from the interior spoil area probably reflects the
longer contact time of ground water with reactive spoil mate-
rial, as inferred from the gentle gradient of the water table
and dye-tracing data. Lower TDS values for the valley-fill
wells probably result from a greater contribution of less min-
eralized surface water into the ground-water flow system and
a shorter residence time.

Ground-water chemistry appears to be controlled by the
dissolution of calcite and probably weathering of chlorite,
and the oxidation of sulfide minerals, resulting in a calcium-
magnesium-sulfate water type for both ground and surface
water at the site. Most of the ground water in the spoil is at or
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near equilibrium with the mineral gypsum. Some areas of the
spoil, especially in valley fill areas near a bedrock highwall,

are diluted by less mineralized surface water
that can more easily infiltrate the spoil in these
zones.

A conceptual model of ground-water flow
patterns indicates that two separate but con-
nected saturated zones occur in the spoil.
Ground-water movement within the spoil is
controlled by the gradients that form as a func-
tion of the interaction of recharge and discharge
zones, by the topography of the relatively im-
permeable pavement that underlies the lowest
coal being mined (Hazard No. 7), and by the
drainage patterns that existed before mining
began. The major streams that drained the pre-
mined area (Chestnut Gap Branch, Spring Gap,
and Long Fork) eroded valleys whose bottoms
are at elevations well below the level of the
No. 7 coal. These drainage valleys became val-
ley fills as contour-cut mining occurred along
the valley walls. The interior of the spoil con-
tains a relatively thin saturated zone from the
accumulation of water from discrete infiltra-
tion zones within the spoil, the infiltration ba-
sin, and the active mining area where
uncompacted or reclaimed spoil are present.
Water that accumulates in the interior zone
most likely flows into the valley fills on either
side of the interior plateau in the upper reaches
of the buried valleys in the southeastern sec-
tion of the spoil, or flows to the northwest and
discharges into either of the two ponds exca-
vated into the bedrock pavement below the
Hazard No. 7 coal.

Water in the valley fills receives contribu-
tions of ground water from the adjacent un-
mined bedrock highwall and surface water that
accumulates and later percolates along the
spoil-bedrock contact. The total mine outflow
measured in the northwestern area of the re-
claimed spoil produces a base flow of approxi-
mately 4 cfs (2.6 mgd). Variations in water
quality observed at the site are related to the
flow system described by this model.

Measurements taken at the spoil surface in-
dicate that the spoil is exhibiting differential
settlement related to the age and thickness of
the spoil. The most recently mined areas of
the spoil body exhibit the greatest settlement;
the maximum spoil settlement rate observed
was 0.28 ft per year.

Contour lines on maps of the spoil’s water
table and the spoil settlement are similar in that

they both show changes in gradients that correlate with abrupt
changes in topography defined by buried valleys and the pave-

Summary

Figure 24. Mine spoil settlement around monitoring wells from July 1989–
July 1992 and from August 1992–November 1993.
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ment bedrock resulting from coal extraction. This implies that
the buried topography beneath large spoil areas such as the
Star Fire site is important in predicting hydrologic and geo-
technical characteristics of the spoil body, and must be con-
sidered when evaluating such sites.

The initial water-quality and -quantity data measured at
the Star Fire Mine demonstrate that the ongoing mining tech-
niques can provide the physical framework for water storage
in the extensive mine spoil. Although the water stored in the
spoil is not potable at this time, it likely could serve for vari-
ous agricultural and industrial uses and may become more
useful with time and as water-treatment technology improves.
Development of a useful water supply within the spoil will be
a key factor in future land use and economic diversity of the
site and other similar sites in eastern Kentucky.
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