We give pole free strips and estimates for resolvents of semiclassical
operators which, on the level of the classical flow, have normally hyperbolic
smooth trapped sets of codimension two in phase space. Such trapped sets are
structurally stable and our motivation comes partly from considering the wave
equation for Kerr black holes and their perturbations, whose trapped sets have
precisely this structure. We give applications including local smoothing
effects with epsilon derivative loss for the Schr\"odinger propagator as well
as local energy decay results for the wave equation.Comment: Further changes to erratum correcting small problems with Section 3.5
and Lemma 4.1; this now also corrects hypotheses, explicitly requiring
trapped set to be symplectic. Erratum follows references in this versio