50 research outputs found

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    Obesity Takes Its Toll on Visceral Pain: High-Fat Diet Induces Toll-Like Receptor 4- Dependent Visceral Hypersensitivity

    Get PDF
    Exposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain. However, it remains unknown whether there is a functional interaction between the role of TLR4 in diet-induced obesity and in visceral pain. In the present study we investigated the impact of long-term exposure to high-fat diet on visceral pain perception and on the levels of TLR4 and Cd11b (a microglial cell marker) protein expression in the prefrontal cortex (PFC) and hippocampus. Peripheral alterations in TLR4 were assessed following the stimulation of spleenocytes with the TLR4-agonist LPS. Finally, we evaluated the effect of blocking TLR4 on visceral nociception, by administering TAK-242, a selective TLR4-antagonist. Our results demonstrated that exposure to high-fat diet induced visceral hypersensitivity. In parallel, enhanced TLR4 expression and microglia activation were found in brain areas related to visceral pain, the PFC and the hippocampus. Likewise, peripheral TLR4 activity was increased following long-term exposure to high-fat diet, resulting in an increased level of pro-inflammatory cytokines. Finally, TLR4 blockage counteracted the hyperalgesic phenotype present in mice fed on high-fat diet. Our data reveal a role for TLR4 in visceral pain modulation in a model of diet-induced obesity, and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity present in pathologies associated to fat diet consumption

    A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'

    Get PDF
    Background: Russeting is a disorder developed by apple fruits that consists of cuticle cracking followed by the replacement of the epidermis by a corky layer that protects the fruit surface from water loss and pathogens. Although influenced by many environmental conditions and orchard management practices, russeting is under genetic control. The difficulty in classifying offspring and consequent variable segregation ratios have led several authors to conclude that more than one genetic determinant could be involved, although some evidence favours a major gene (Ru). Results: In this study we report the mapping of a major genetic russeting determinant on linkage group 12 of apple as inferred from the phenotypic observation in a segregating progeny derived from 'Renetta Grigia di Torriana', the construction of a 20 K Illumina SNP chip based genetic map, and QTL analysis. Recombination analysis in two mapping populations restricted the region of interest to approximately 400 Kb. Of the 58 genes predicted from the Golden Delicious sequence, a putative ABCG family transporter has been identified. Within a small set of russeted cultivars tested with markers of the region, only six showed the same haplotype of 'Renetta Grigia di Torriana'. Conclusions: A major determinant (Ru_RGT) for russeting development putatively involved in cuticle organization is proposed as a candidate for controlling the trait. SNP and SSR markers tightly co-segregating with the Ru_RGT locus may assist the breeder selection. The observed segregations and the analysis of the 'Renetta Grigia di Torriana' haplotypic region in a panel of russeted and non-russeted cultivars may suggest the presence of other determinants for russeting in apple

    Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    Get PDF
    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo

    Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Get PDF
    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin-15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and have a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). Although the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S ribosomal RNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (villin-IL-15 transgenic (v-IL-15tg) mice) shows distinct changes in the composition of the intestinal bacteria. Although some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate-producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate-induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases
    corecore