5,135 research outputs found

    On Minimax Fractional Optimality Conditions with Invexity

    Get PDF
    AbstractUnder different forms of invexity conditions, sufficient Kuhn–Tucker conditions and three dual models are presented for the minimax fractional programming

    Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity

    Full text link
    Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we could see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in earth's gravitational field may form a gravitationally bound quantized state, which had already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are discussed in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.Comment: 12 pages, no figur

    Effect of a short message service intervention on excessive gestational weight gain in a low-income population: a randomized controlled trial

    Get PDF
    Objectives: The objective of this trial was to investigate the effect of educational short message service (SMS), or text messages, on excessive gestational weight gain (GWG) in a low-income, predominantly overweight/obese population. Methods: Participants (n = 83) were mostly overweight/obese women recruited at Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) clinics on the island of O’ahu, Hawai’i at 15–20 weeks gestational age. The intervention group received SMS on nutrition and physical activity during pregnancy designed to help them meet Institute of Medicine (IOM) guidelines for GWG and American College of Obstetricians and Gynecologists guidelines for exercise, respectively. The control group received SMS about general health topics during pregnancy, excluding nutrition and physical activity. Both groups received one text message per week for eighteen weeks. GWG was defined as the difference between the last self-reported weight taken before delivery and participants’ self-reported weight before pregnancy. Differences between study groups were examined using t-tests and Chi-square tests. Linear regression models were used to examine association of GWG with study group and other factors. Results: GWG was similar (p = 0.58) in the control group (14.1 ± 11.4 kg) and the intervention group (15.5 ± 11.6 kg). The percentage of participants exceeding IOM guidelines for GWG was similar (p = 0.51) in the control group (50.0%, n = 17) and the intervention group (60.5%, n = 23). Conclusions: GWG was not significantly different between intervention and control groups. Trials that begin earlier in pregnancy or before pregnancy with longer intervention durations and varying message frequency as well as personalized or interactive messages may be needed to produce significant improvements

    Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?

    Get PDF
    Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options

    Reduction of the Three Dimensional Schrodinger Equation for Multilayered Films

    Full text link
    In this paper, we present a method for reducing the three dimensional Schrodinger equation to study confined metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approximations that are employed when dealing with the three dimensionality of the problem, we derive a one dimensional equation suitable for studying such states using an envelope function approach. Some applications to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle resolved photoemission are discussed.Comment: 14 pages, 1 figur

    Bogoliubov sound speed in periodically modulated Bose-Einstein condensates

    Full text link
    We study the Bogoliubov excitations of a Bose-condensed gas in an optical lattice. Of primary interest is the long wavelength phonon dispersion for both current-free and current-carrying condensates. We obtain the dispersion relation by carrying out a systematic expansion of the Bogoliubov equations in powers of the phonon wave vector. Our result for the current-carrying case agrees with the one recently obtained by means of a hydrodynamic theory.Comment: 16 pages, no figure

    Sensing with magnetic dipolar resonances in semiconductor nanospheres

    Get PDF
    In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractiveindex dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker's condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes. © 2013 Optical Society of America.B.G.-C. acknowledges support from the JAE-Doc program of the Spanish Council of Research (CSIC). This research has been funded by Ministerio de Ciencia e Innovación, through grants: Consolider NanoLight (CSD2007-00046), FIS2009-13430-C02, as well as by the Comunidad de Madrid (Microseres-CM, S2009/TIC-1476).Peer Reviewe

    Analysis and reduction of on-load DC winding induced voltage in wound field switched flux machines

    Get PDF
    DC winding induced voltage pulsation in wound field switched flux (WFSF) machines causes DC winding current ripple and field excitation fluctuation, challenges the DC power source and deteriorates the control performance. Hence, reducing this pulsation is important in the design of a WFSF machine. In this paper, based on the analytical models, rotor skewing and rotor iron piece pairing are proposed and comparatively investigated by the finite element (FE) method to reduce the on-load DC winding induced voltage in WFSF machines having partitioned stators and concentrated AC windings. FE results show that peak to peak value of the on-load DC winding induced voltage in the analysed 12/10-pole partitioned stator WFSF (PS-WFSF) machines can be reduced by 78.42% or 77.16% by using rotor skewing or rotor pairing, respectively, whilst the torque density can be maintained by >90%. As for the 12/11-, 12/13- and 12/14-pole PS-WFSF machines, by using rotor iron piece inner arc pairing, the on-load DC winding induced voltage can be reduced by 64.11%, 52.12% and 76.49%, respectively, whilst the torque density can also be maintained by more than 90%. Prototypes are built and tested to verify the analytical and FE results

    Characteristics and Sensing Properties of the La1-xNdxCo0.3Fe0.7O3 System for CO Gas Sensors

    Get PDF
    A series of nanostructured La1-xNdxCo0.3Fe0.7O3 perovskite-type (x ranging from 0 to 1) were prepared using the co-precipitation method. CO gas sensing properties of La1-xNdxCo0.3Fe0.7O3 sensors were performed. La0.7Nd0.3Co0.3Fe0.7O3 sensor showed the highest response at 250 °C (S=52.8)

    Ruling out the Modified Chaplygin Gas Cosmologies

    Get PDF
    The Modified Chaplygin Gas (MCG) model belongs to the class of a unified models of dark energy (DE) and dark matter (DM). It is characterized by an equation of state (EoS) pc=BρA/ραp_c = B\rho - A/\rho^{\alpha}, where the case B=0B=0 corresponds to the Generalized Chaplygin Gas (GCG) model. Using a perturbative analysis and power spectrum observational data we show that the MCG model is not a sucessful candidate for the cosmic medium unless B=0B=0. In this case, it reduces to the usual GCG model.Comment: Latex file, 7 pages, 6 figures in eps forma
    corecore