7,052 research outputs found

    Optically Enhanced Bonding Workstation for Robust Bonding

    Get PDF
    Process control is one of the methods recommended by the FAA to reduce risk in fabrication of structurally bonded composite joints for aircraft structure based on guidance provided in circular AC-107B for certification of structurally bonded joints. An Optically Enhanced Bonding Workstation is presented here that reduces the risk in bonded joint fabrication. Results will be presented demonstrating the benefits of process monitoring and its ability to reduce risk in performing pre-bond composite surface preparation steps. This supports reduction in the timeline to certification of bonded composite structures through development of a robust bonding process upstream of any part certification steps. Sanding surface preparation has been identified as a high risk process step that is known to impact bond performance. Control of sanding during surface preparation can be performed using portable surface analysis tools previously identified including included gloss, color, Fourier Transform Infrared spectroscopy (FTIR) and optically stimulated electron emissions (OSEE). Threshold limits for the surface analysis tool measurements were determined based on an example objective bonding system utilizing a common EA9394 paste adhesive measured using standard double cantilever beam fracture toughness testing. The patented Optically Enhanced Bonding Workstation (OEBW), was tailored to monitor and control the epoxy composite surface preparation step. Surface analysis tool threshold limits were incorporated into the OEBW to demonstrate improved composite bond performance through process control. The surface analysis tools investigated here can easily be incorporated into an automated system due to their applicability to rapidly quantify the composite sanded surface treatment and their portability

    ICPR2017 – The Fourth International Conference on Practice Research: overview

    Get PDF
    This paper reports issues arising from the Fourth International Conference on Practice Research, held in Hong Kong in May 2017. The issues were identified by specially convened group of conference participants, and include the need to develop a better language to describe practice research in terms that make sense to practitioners, improved support for practitioners to conduct research, recognising the different drivers for practice research in different countries, and enhancing practitioners' coordinating and leadership roles

    Receptors for Insulin-Like Growth Factor-2 and Androgens as Therapeutic Targets in Triple-Negative Breast Cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) occurs in 10-15% of all breast cancer patients, yet it accounts for about half of all breast cancer deaths. There is an urgent need to identify new antitumor targets to provide additional treatment options for patients afflicted with this aggressive disease. Preclinical evidence suggests a critical role for insulin-like growth factor-2 (IGF2) and androgen receptor (AR) in regulating TNBC progression. To advance this work, a panel of TNBC cell lines was investigated with all cell lines showing significant expression of IGF2. Treatment with IGF2 stimulated cell proliferation in vitro (p < 0.05). Importantly, combination treatments with IGF1R inhibitors BMS-754807 and NVP-AEW541 elicited significant inhibition of TNBC cell proliferation (p < 0.001). Based on Annexin-V binding assays, BMS-754807, NVP-AEW541 and enzalutamide induced TNBC cell death (p < 0.005). Additionally, combination of enzalutamide with BMS-754807 or NVP-AEW541 exerted significant reductions in TNBC proliferation even in cells with low AR expression (p < 0.001). Notably, NVP-AEW541 and BMS-754807 reduced AR levels in BT549 TNBC cells. These results provide evidence that IGF2 promotes TNBC cell viability and proliferation, while inhibition of IGF1R/IR and AR pathways contribute to blockade of TNBC proliferation and promotion of apoptosis in vitro

    An increase in adenosine-5’-triphosphate (ATP) content in rostral ventrolateral medulla is engaged in the high fructose diet-induced hypertension

    Get PDF
    BACKGROUND: The increase in fructose ingestion has been linked to overdrive of sympathetic activity and hypertension associated with the metabolic syndrome. The premotor neurons for generation of sympathetic vasomotor activity reside in the rostral ventrolateral medulla (RVLM). Activation of RVLM results in sympathoexcitation and hypertension. Neurons in the central nervous system are able to utilize fructose as a carbon source of ATP production. We examined in this study whether fructose affects ATP content in RVLM and its significance in the increase in central sympathetic outflow and hypertension induced by the high fructose diet (HFD). RESULTS: In normotensive rats fed with high fructose diet (HFD) for 12 weeks, there was a significant increase in tissue ATP content in RVLM, accompanied by the increases in the sympathetic vasomotor activity and blood pressure. These changes were blunted by intracisternal infusion of an ATP synthase inhibitor, oligomycin, to the HFD-fed animals. In the catecholaminergic-containing N2a cells, fructose dose-dependently upregulated the expressions of glucose transporter 2 and 5 (GluT2, 5) and the rate-limiting enzyme of fructolysis, ketohexokinase (KHK), leading to the increases in pyruvate and ATP production, as well as the release of the neurotransmitter, dopamine. These cellular events were significantly prevented after the gene knocking down by lentiviral transfection of small hairpin RNA against KHK. CONCLUSION: These results suggest that increases in ATP content in RVLM may be engaged in the augmented sympathetic vasomotor activity and hypertension associated with the metabolic syndrome induced by the HFD. At cellular level, the increase in pyruvate levels via fructolysis is involved in the fructose-induced ATP production and the release of neurotransmitter

    Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women

    Get PDF
    Scope Numerous studies feeding anthocyanin-rich foods report limited bioavailability of the parent anthocyanins. The present study explores the identity and concentration of the phenolic metabolites of anthocyanins in humans. Methods and results Anthocyanin metabolites were quantified in samples collected from a previously conducted 12-wk elderberry intervention study in healthy post-menopausal women. Individual 1-, 2- and 3-h post-bolus urine samples and pooled plasma samples following acute (single bolus) and chronic (12-wk supplementation) anthocyanin consumption (500 mg/day) were analysed using HPLC-ESI-MS/MS. Twenty-eight anthocyanin metabolites were identified in urine and 21 in plasma (including sulfates of vanillic, protocatechuic and benzoic acid). Phenolic metabolites reached peak concentrations of 1237 nM in plasma, while anthocyanin conjugates only reached concentrations of 34 nM. Similarly, in urine, phenolic metabolites were detected at concentrations of 33 185 ± 2549 nM/mM creatinine, while anthocyanin conjugates reached concentrations of 548 ± 219 nM/mM creatinine. There was no evidence that chronic exposure had any impact on either the profile or quantity of metabolites recovered relative to acute exposure. Conclusion An extensive range of phenolic metabolites of anthocyanin was identified following elderberry consumption in humans, including 11 novel metabolites, which were identified at much higher concentrations than their parent compounds

    Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study

    Get PDF
    BACKGROUND: Evidence suggests that the consumption of anthocyanin-rich foods beneficially affects cardiovascular health; however, the absorption, distribution, metabolism, and elimination (ADME) of anthocyanin-rich foods are relatively unknown. OBJECTIVE: We investigated the ADME of a (13)C5-labeled anthocyanin in humans. DESIGN: Eight male participants consumed 500 mg isotopically labeled cyanidin-3-glucoside (6,8,10,3',5'-(13)C5-C3G). Biological samples were collected over 48 h, and (13)C and (13)C-labeled metabolite concentrations were measured by using isotope-ratio mass spectrometry and liquid chromatography-tandem mass spectrometry. RESULTS: The mean +/- SE percentage of (13)C recovered in urine, breath, and feces was 43.9 +/- 25.9% (range: 15.1-99.3% across participants). The relative bioavailability was 12.38 +/- 1.38% (5.37 +/- 0.67% excreted in urine and 6.91 +/- 1.59% in breath). Maximum rates of (13)C elimination were achieved 30 min after ingestion (32.53 +/- 14.24 mug(13)C/h), whereas (13)C-labeled metabolites peaked (maximum serum concentration: 5.97 +/- 2.14 mumol/L) at 10.25 +/- 4.14 h. The half-life for (13)C-labeled metabolites ranged between 12.44 +/- 4.22 and 51.62 +/- 22.55 h. (13)C elimination was greatest between 0 and 1 h for urine (90.30 +/- 15.28 mug/h), at 6 h for breath (132.87 +/- 32.23 mug/h), and between 6 and 24 h for feces (557.28 +/- 247.88 mug/h), whereas the highest concentrations of (13)C-labeled metabolites were identified in urine (10.77 +/- 4.52 mumol/L) and fecal samples (43.16 +/- 18.00 mumol/L) collected between 6 and 24 h. Metabolites were identified as degradation products, phenolic, hippuric, phenylacetic, and phenylpropenoic acids. CONCLUSION: Anthocyanins are more bioavailable than previously perceived, and their metabolites are present in the circulation fo

    LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks with TTFS Coding

    Full text link
    The biological neurons use precise spike times, in addition to the spike firing rate, to communicate with each other. The time-to-first-spike (TTFS) coding is inspired by such biological observation. However, there is a lack of effective solutions for training TTFS-based spiking neural network (SNN). In this paper, we put forward a simple yet effective network conversion algorithm, which is referred to as LC-TTFS, by addressing two main problems that hinder an effective conversion from a high-performance artificial neural network (ANN) to a TTFS-based SNN. We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks, including image classification, image reconstruction, and speech enhancement. With TTFS coding, we can achieve up to orders of magnitude saving in computation over ANN and other rate-based SNNs. The study, therefore, paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms

    Formative experience [postgraduate industrial experience]

    Get PDF
    Producing the graduates that industry wants is more complicated than simply cramming them full of the right knowledge; they must also develop the confidence and understanding to serve the needs of their future employers. This can only be gained from experience in a real manufacturing environment. The authors describe the pioneering approach to industrial experience given to postgraduates at Cranfield University
    • …
    corecore