331 research outputs found

    Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich

    Get PDF
    The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches (Struthio camelus) possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development

    Automatic Segmentation of Muscle Tissue and Inter-muscular Fat in Thigh and Calf MRI Images

    Full text link
    Magnetic resonance imaging (MRI) of thigh and calf muscles is one of the most effective techniques for estimating fat infiltration into muscular dystrophies. The infiltration of adipose tissue into the diseased muscle region varies in its severity across, and within, patients. In order to efficiently quantify the infiltration of fat, accurate segmentation of muscle and fat is needed. An estimation of the amount of infiltrated fat is typically done visually by experts. Several algorithmic solutions have been proposed for automatic segmentation. While these methods may work well in mild cases, they struggle in moderate and severe cases due to the high variability in the intensity of infiltration, and the tissue's heterogeneous nature. To address these challenges, we propose a deep-learning approach, producing robust results with high Dice Similarity Coefficient (DSC) of 0.964, 0.917 and 0.933 for muscle-region, healthy muscle and inter-muscular adipose tissue (IMAT) segmentation, respectively.Comment: 9 pages, 4 figures, 2 tables, MICCAI 2019, the 22nd International Conference on Medical Image Computing and Computer Assisted Interventio

    Using Three-Dimensional Gait Data for Foot/Ankle Orthopaedic Surgery

    Get PDF
    We present the case of a forty year old male who sustained a torn carotid during strenuous physical activity. This was followed by a right hemispheric stroke due to a clot associated with the carotid. Upon recovery, the patient’s gait was characterized as hemiparetic with a stiff-knee pattern, a fixed flexion deformity of the toe flexors, and a hindfoot varus. Based on clinical exams and radiographs, the surgical treatment plan was established and consisted of correction of the forefoot deformities, possible hamstrings lengthening, and tendon transfer of the posterior tibial tendon to the dorsolateral foot. To aid in surgical planning, a three-dimensional gait analysis was conducted using a state-of-the-art motion capture system. Data from this analysis provided insight into the pathomechanics of the patient’s gait pattern. A forefoot driven hindfoot varus was evident from the presurgical data and the tendon transfer procedure was deemed unnecessary. A computer was used in the OR to provide surgeons with animations of the patient’s gait and graphical results as needed. A second gait analysis was conducted 6 weeks post surgery, shortly after cast removal. Post-surgical gait data showed improved foot segment orientation and position. Motion capture data provides clinicians with detailed information on the multisegment kinematics of foot motion during gait, before and during surgery. Further, treatment effectiveness can be evaluated by repeating gait analyses after recovery

    Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression.</p> <p>Results</p> <p>Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed.</p> <p>Conclusions</p> <p>The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.</p

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Predicting the location of the hip joint centres, impact of age group and sex

    Get PDF
    Clinical gait analysis incorporating three-dimensional motion analysis plays a key role in planning surgical treatments in people with gait disability. The position of the Hip Joint Centre (HJC) within the pelvis is thus critical to ensure accurate data interpretation. The position of the HJC is determined from regression equations based on anthropometric measurements derived from relatively small datasets. Current equations do not take sex or age into account, even though pelvis shape is known to differ between sex, and gait analysis is performed in populations with wide range of age. Three dimensional images of 157 deceased individuals (37 children, 120 skeletally matured) were collected with computed tomography. The location of the HJC within the pelvis was determined and regression equations to locate the HJC were developed using various anthropometrics predictors. We determined if accuracy improved when age and sex were introduced as variables. Statistical analysis did not support differentiating the equations according to sex. We found that age only modestly improved accuracy. We propose a range of new regression equations, derived from the largest dataset collected for this purpose to date

    Lumbar spine and total-body dual-energy X-ray absorptiometry in children with severe neurological impairment and intellectual disability: a pilot study of artefacts and disrupting factors

    Get PDF
    Background Children with severe neurological impairment and intellectual disability (ID) are susceptible for developing low bone mineral density (BMD) and fractures. BMD is generally measured with dual-energy X-ray absorptiometry (DXA). Objective To describe the occurrence of factors that may influence the feasibility of DXA and the accuracy of DXA outcome in children with severe neurological impairment and ID. Materials and methods Based on literature and expert opinion, a list of disrupting factors was developed. Occurrence of these factors was assessed in 27 children who underwent DXA measurement. Results Disrupting factors that occurred most frequently were movement during measurement (82%), aberrant body composition (67%), small length for age (56%) and scoliosis (37%). The number of disrupting factors per child was mean 5.3 (range 1-8). No correlation was found between DXA outcomes and the number of disrupting factors. Conclusion Factors that may negatively influence the accuracy of DXA outcome are frequently present in children with severe neurological impairment and ID. No systematic deviation of DXA outcome in coherence with the amount of disrupting factors was found, but physicians should be aware of the possible influence of disrupting factors on the accuracy of DXA

    Neural Network Analysis of Bone Vibration Signals to Assesses Bone Density

    Get PDF
    Osteoporosis is a systemic disease, characterised by low bone mineral density (BMD) with a consequent increase in bone fragility. The most commonly used method to examine BMD is dual energy X-ray absorptiometry (DXA). However DXA cannot be used reliably in children less than 5 years old because of the limitations in the availability of required normative data. Vibration analysis is a well-established technique for analysing physical properties of materials and so it has the potential for assessing BMD. The overall purpose of this study was development and evaluation of low frequency vibration analysis as a tool to assess BMD in children. A novel portable computer-controlled system that suitably vibrated the bone, acquired, stored, displayed and analysed the resulting bone vibration responses was developed and its performance was investigated by comparing it with DXA-derived BMD values in children. 41 children aged between 7 and 15 years suspected of having abnormal BMD were enrolled. The ulna was chosen for all tests due to the ease with which it could be vibrated and responses measured. Frequency spectra of bone vibration responses were obtained using both impulse and continuous methods and these plus the participants’ clinical data were processed by a multilayer perceptron (MLP) artificial neural network. The correlation coefficient values between MLP outputs and DXA-derived BMD values were 0.79 and 0.86 for impulse and continuous vibration methods respectively. It was demonstrated that vibration analysis has potential for assessing fracture ris

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Validity and test-retest reliability of manual goniometers for measuring passive hip range of motion in femoroacetabular impingement patients.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to evaluate the construct validity (known group), concurrent validity (criterion based) and test-retest (intra-rater) reliability of manual goniometers to measure passive hip range of motion (ROM) in femoroacetabular impingement patients and healthy controls.</p> <p>Methods</p> <p>Passive hip flexion, abduction, adduction, internal and external rotation ROMs were simultaneously measured with a conventional goniometer and an electromagnetic tracking system (ETS) on two different testing sessions. A total of 15 patients and 15 sex- and age-matched healthy controls participated in the study.</p> <p>Results</p> <p>The goniometer provided greater hip ROM values compared to the ETS (range 2.0-18.9 degrees; <it>P </it>< 0.001); good concurrent validity was only achieved for hip abduction and internal rotation, with intraclass correlation coefficients (ICC) of 0.94 and 0.88, respectively. Both devices detected lower hip abduction ROM in patients compared to controls (<it>P </it>< 0.01). Test-retest reliability was good with ICCs higher 0.90, except for hip adduction (0.82-0.84). Reliability estimates did not differ between the goniometer and the ETS.</p> <p>Conclusions</p> <p>The present study suggests that goniometer-based assessments considerably overestimate hip joint ROM by measuring intersegmental angles (e.g., thigh flexion on trunk for hip flexion) rather than true hip ROM. It is likely that uncontrolled pelvic rotation and tilt due to difficulties in placing the goniometer properly and in performing the anatomically correct ROM contribute to the overrating of the arc of these motions. Nevertheless, conventional manual goniometers can be used with confidence for longitudinal assessments in the clinic.</p
    corecore