664 research outputs found

    Computational methods for Bayesian model choice

    Full text link
    In this note, we shortly survey some recent approaches on the approximation of the Bayes factor used in Bayesian hypothesis testing and in Bayesian model choice. In particular, we reassess importance sampling, harmonic mean sampling, and nested sampling from a unified perspective.Comment: 12 pages, 4 figures, submitted to the proceedings of MaxEnt 2009, July 05-10, 2009, to be published by the American Institute of Physic

    Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease

    Get PDF
    © 2008 Zhu et al. This article is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).Maintaining tolerance of T cells to self-antigens is essential to avoid autoimmune disease. How self-reactive T cells are kept functionally inactive is, however, unknown. In this study, we show that early growth response gene 2 (Egr-2), a zinc-finger transcription factor, is expressed in CD44(high) T cells and controls their proliferation and activation. In the absence of Egr-2, CD44(high), but not CD44(low) T cells, are hyperreactive and hyperproliferative in vivo. The accumulation of activated CD4(+)CD44(high) T cells leads to the development of a late onset lupuslike autoimmune disease characterized by the accumulation of interferon (IFN)-gamma and interleukin (IL)-17-producing CD4(+) T cells, loss of tolerance to nuclear antigens, massive infiltration of T cells into multiple organs and glomerulonephritis. We found that the expression of cyclin-dependent kinase inhibitor p21cip1 was impaired in Egr-2-deficient T cells, whereas the expression of IFN-gamma and IL-17 in response to T cell receptor ligation was significantly increased, suggesting that Egr-2 activates the expression of genes involved in the negative regulation of T cell proliferation and inflammation. These results demonstrate that Egr-2 is an intrinsic regulator of effector T cells and controls the expansion of self-reactive T cells and development of autoimmune disease.The Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Wellcome Trust

    A humanized HLA-DR4 mouse model for autoimmune myocarditis

    Get PDF
    WOS: 000403386800003PubMed ID: 28431892Myocarditis, the principal cause of dilated cardiomyopathy and heart failure in young adults, is associated with autoimmunity to human cardiac alpha-myosin (hCAM) and the DR4 allele of human major histocompatibility II (MHCII). We developed an hCAM-induced myocarditis model in human HLA-DR4 transgenic mice that lack all mouse MHCII genes, demonstrating that immunization for 3 weeks significantly increased splenic T-cell proliferative responses and titres of IgG1 and IgG2c antibodies, abolished weight gain, provoked cardiac inflammation and significantly impaired cardiac output and fractional shortening, by echocardiography, compared to adjuvant -injected mice. Neither cardiac dilatation nor fibrosis occurred at this time point but prolonging the experiment was associated with mortality. Treatment with mixtures of hCAM derived peptides predicted to have high affinity for DR4 significantly preserved ejection fraction and fractional shortening. Our new humanized mouse model of autoimmune cardiomyopathy should be useful to refine hCAM-derived peptide treatment. (C) 2017 The Authors. Published by Elsevier Ltd.Turkish Ministry of EducationTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); British Heart FoundationBritish Heart Foundation [CH95/001]; Apitope International NVMES was supported by a Postgraduate Scholarship from the Turkish Ministry of Education. ACN was supported by a British Heart Foundation Chair CH95/001. Apitope International NV, supported the research, in part, through a grant in aid

    Protein kinase C theta is required for efficient induction of IL-10-secreting T cells

    Get PDF
    <div><p>Secretion of interleukin-10 (IL-10) by CD4<sup>+</sup> T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4<sup>+</sup> T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10<sup>+</sup> T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10<sup>+</sup> T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10<sup>+</sup> T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells <i>in vitro</i> and <i>in vivo</i>. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance.</p></div

    Negative Selection during the Peripheral Immune Response to Antigen

    Get PDF
    Thymic selection depends on positive and negative selective mechanisms based on the avidity of T cell interaction with antigen–major histocompatibility complex complexes. However, peripheral mechanisms for the recruitment and clonal expansion of the responding T cell repertoire remain obscure. Here we provide evidence for an avidity-based model of peripheral T cell clonal expansion in response to antigenic challenge. We have used the encephalitogenic, H-2 Au-restricted, acetylated NH2-terminal nonameric peptide (Ac1-9) epitope from myelin basic protein as our model antigen. Peptide analogues were generated that varied in antigenic strength (as assessed by in vitro assay) based on differences in their binding affinity for Au. In vivo, these analogues elicited distinct repertoires of T cells that displayed marked differences in antigen sensitivity. Immunization with the weakest (wild-type) antigen expanded the high affinity T cells required to induce encephalomyelitis. In contrast, immunization with strongly antigenic analogues led to the elimination of T cells bearing high affinity T cell receptors by apoptosis, thereby preventing disease development. Moreover, the T cell repertoire was consistently tuned to respond to the immunizing antigen with the same activation threshold. This tuning mechanism provides a peripheral control against the expansion of autoreactive T cells and has implications for immunotherapy and vaccine design

    Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5

    Full text link
    We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark energy equation of state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. We implement an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-z galaxies. Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae only; the parameter uncertainties are underestimated by 10%. The weak lensing field-to-field variance pointings is 5%-15% higher than that predicted from N-body simulations. We find no bias of the lensing signal at high redshift, within the framework of a simple model. Assuming a systematic underestimation of the lensing signal at high redshift, the normalisation sigma_8 increases by up to 8%. Combining all three probes we obtain -0.10<1+w<0.06 at 68% confidence (-0.18<1+w<0.12 at 95%), including systematic errors. Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15sigma. [Abridged]Comment: 14 pages, 10 figures. Revised version, matches the one to be published in A&A. Modifications have been made corresponding to the referee's suggestions, including reordering of some section

    Isomer shift and magnetic moment of the long-lived 1/2+^{+} isomer in 3079^{79}_{30}Zn49_{49}: signature of shape coexistence near 78^{78}Ni

    Full text link
    Collinear laser spectroscopy has been performed on the 3079^{79}_{30}Zn49_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in 79^{79}Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins I=9/2I = 9/2 and I=1/2I = 1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ\mu (79^{79}Zn) = -1.1866(10) μN\mu_{\rm{N}}, confirms the spin-parity 9/2+9/2^{+} with a νg9/21\nu g_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ\mu (79m^{79m}Zn) = -1.0180(12) μN\mu_{\rm{N}} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50N = 50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state: δrc279,79m\delta \langle r^{2}_{c}\rangle^{79,79m} = +0.204(6) fm2^{2}, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016
    corecore