143 research outputs found

    Power output ïŹ‚uctuations in large scale PV plants: one year observations with one second resolution and a derived analytic model

    Get PDF
    The variable nature of the irradiance can produce significant fluctuations in the power generated by large grid-connected photovoltaic (PV) plants. Experimental 1 s data were collected throughout a year from six PV plants, 18 MWp in total. Then, the dependence of short (below 10 min) power fluctuation on PV plant size has been investigated. The analysis focuses on the study of fluctuation frequency as well as the maximum fluctuation value registered. An analytic model able to describe the frequency of a given fluctuation for a certain day is propose

    A model for the simulation of energy gains when using distributed maximum power point tracking (DMPPT) in photovoltaic arrays

    Get PDF
    Over the past years, the photovoltaic (PV) market has been invaded with numerous power optimizers and micro-inverters that claim large energy gains when used in PV generators with shading or module mismatch. These products provide distributed maximum power point tracking (DMPPT), normally at module level, allowing the maximum power to be extracted from each PV module. This topology can be beneficial in situations where the PV generator is shaded or when there is large module mismatch. However, it is not clear that this power gain will result in energy improvements over a whole year or the lifetime of the system. This paper presents a very detailed and precise model for simulating energy gains with DMPPT as well as its verification and simulation results with different shading profiles, showing the possible energy gain over a whole year. Simulation results show that the yearly energy gain is much lower than the maximum power gain. However, interesting yearly gains of up to 12% are obtained in one of the simulations

    Cost of energy and mutual shadows in a two-axis tracking PV system

    Get PDF
    The performance improvement obtained from the use of trackers in a PV system cannot be separated from the higher requirement of land due to the mutual shadows between generators. Thus, the optimal choice of distances between trackers is a compromise between productivity and land use to minimize the cost of the energy produced by the PV system during its lifetime. This paper develops a method for the estimation and optimization of the cost of energy function. It is built upon a set of equations to model the mutual shadows geometry and a procedure for the optimal choice of the wire cross-section. Several examples illustrate the use of the method with a particular PV system under different conditions of land and equipment costs. This method is implemented using free software available as supplementary material

    Solar Energy Generation in Three Dimensions

    Get PDF
    We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions(1-5). We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2-20 than stationary flat PV panels, versus an increase by a factor of 1.3-1.8 achieved with a flat panel using dual-axis sun tracking(6). The increased energy density is countered by a higher solar cell area per generated energy for 3DPV compared to flat panel design (by a factor of 1.5-4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures are steadier sources of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation.Comment: 40 pages, 16 pages paper (3 figures), 24 pages supplementary information (7 figures). Energy and Environmental Science (2012, Published on-line

    A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes

    Get PDF
    Recently, after high feed-in tariffs in Italy, retroactive cuts in the energy payments have generated economic concern about several grid-connected photovoltaic (PV) systems with poor performance. In this paper the proposed procedure suggests some rules for determining the sources of losses and thus minimizing poor performance in the energy production. The on-site field inspection, the identification of the irradiance sensors, as close as possible the PV system, and the assessment of energy production are three preliminary steps which do not require experimental tests. The fourth step is to test the arrays of PV modules on-site. The fifth step is to test only the PV strings or single modules belonging to arrays with poor performance (e.g., I-V mismatch). The sixth step is to use the thermo-graphic camera and the electroluminescence at the PV-module level. The seventh step is to monitor the DC racks of each inverter or the individual inverter, if equipped with only one Maximum Power Point Tracker (MPPT). Experimental results on real PV systems show the effectiveness of this procedure

    Short-term performance variations of different photovoltaic system technologies under the humid subtropical climate of Kanpur in India

    Get PDF
    The study discusses the short-term performance variations of grid-connected photovoltaic (PV) systems installed in Kanpur, India. The analysis presents a holistic view of the performance variations of three PV array technologies [multi-crystalline (multi-Si), copper indium gallium diselenide and amorphous silicon] and two inverter types (high-frequency transformer and low-frequency transformer). The analysis considers the DC–AC conversion efficiency of the inverter, system performance through performance ratio (PR) calculations, energy variations between fixed and tracking systems and the comparison between calculated and simulated data for the examined period. The energy output difference between the tracking and fixed systems of the same PV technology show that these are dependent on differences in temperature coefficient, shading and other system related issues. The PR analysis shows the effect of temperature on the multi-Si system. The difference between the simulated and measured values of the systems was mostly attributed to the irradiance differences. Regarding the inverter evaluation, the results showed that both inverter types underperformed in terms of the conversion efficiency compared with nameplate values

    Electrical Power Fluctuations in a Network of DC/AC inverters in a Large PV Plant: relationship between correlation, distance and time scale

    Get PDF
    This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material

    Introduction

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to improving maintenance. Time is a critical factor in maintenance, and efforts are placed to monitor, analyze, and visualize machine or asset data in order to anticipate to any possible failure, prevent damage, and save costs. The MANTIS Book aims to highlight the underpinning fundamentals of Condition-Based Maintenance related conceptual ideas, an overall idea of preventive maintenance, the economic impact and technical solution. The core content of this book describes the outcome of the Cyber-Physical System based Proactive Collaborative Maintenance project, also known as MANTIS, and funded by EU ECSEL Joint Undertaking under Grant Agreement nÂș 662189. The ambition has been to support the creation of a maintenance-oriented reference architecture that support the maintenance data lifecycle, to enable the use of novel kinds of maintenance strategies for industrial machinery. The key enabler has been the fine blend of collecting data through Cyber-Physical Systems, and the usage of machine learning techniques and advanced visualization for the enhanced monitoring of the machines. Topics discussed include, in the context of maintenance: Cyber-Physical Systems, Communication Middleware, Machine Learning, Advanced Visualization, Business Models, Future Trends. An important focus of the book is the application of the techniques in real world context, and in fact all the work is driven by the pilots, all of them centered on real machines and factories. This book is suitable for industrial and maintenance managers that want to implement a new strategy for maintenance in their companies. It should give readers a basic idea on the first steps to implementing a maintenance-oriented platform or information system.info:eu-repo/semantics/publishedVersio
    • 

    corecore