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Abstract

Methods designed for second-order stationary time series can be misleading when
applied to nonstationary series, often resulting in inaccurate models and poor fore-
casts. Hence, testing time series stationarity is important especially with the advent
of the ‘data revolution’ and the recent explosion in the number of nonstationary time
series analysis tools. Most existing stationarity tests rely on a single basis. We pro-
pose new tests that use nondecimated basis libraries which permit discovery of a wider
range of nonstationary behaviours, with greater power whilst preserving acceptable
statistical size. Our tests work with a wide range of time series including those whose
marginal distributions possess heavy tails. We provide freeware R software that imple-
ments our tests and a range of graphical tools to identify the location and duration of
nonstationarities. Theoretical and simulated power calculations show the superiority
of our wavelet packet approach in a number of important situations and, hence, we
suggest that the new tests are useful additions to the analyst’s toolbox.

Keywords: stationarity test, local stationarity, bootstrap

1 Introduction

If a discrete time series, Xt, t ∈ Z, is stationary then classical (Fourier) theory provides
optimal and well-tested means for its analysis and Xt is required to possess the following
decomposition:

Xt =

∫ π

−π
A(ω) exp(iωt)dξ(ω), (1)

where dξ(ω) is an orthonormal increments process andA(ω) is the amplitude function, see,
for example, Hannan (1960) or Priestley (1983).

We are interested in the case where Xt might be locally stationary: a nonstationary
process which appears to be stationarity over short periods but can change its statistical
properties relatively slowly. Nonstationary time series have been studied over many years,
see Page (1952) or Silverman (1957), for example, and theory was significantly advanced
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by a series of papers by M.B. Priestley and co-authors from the mid 1960s such as Priestley
(1965). Dahlhaus (2012) provides a recent review of locally stationary series.

Many nonstationary representations rely on the Fourier basis to provide oscillation: Sil-
verman (1957), Priestley (1965), Dahlhaus (1997), for example. However, for nonstationary
processes the Fourier basis and (1) are no longer canonical. For example, Priestley (1983)
admits general oscillatory basis functions and stipulates conditions on their form and Nason
et al. (2000) introduced models based on nondecimated wavelets called locally stationary
wavelet (LSW) processes and also suggested using wavelet packets to provide oscillation.

If nonstationarities in a time series are not detected, then one will proceed as if the series
were stationary — with potentially erroneous results for models and forecasts as stationary
analyses average out all the interesting nonstationary behaviour. A simple time series plot
can often aid stationarity determination although their interpretation can be somewhat sub-
jective and maybe less desirable than objective rigorous statistical tests.

An early hypothesis test for stationarity was proposed by Priestley and Subba Rao
(1969) (PSR) that performs an ANOVA analysis on the logarithm of a time-varying spec-
tral estimate at a predefined set of times and frequencies. Software for the PSR test has
recently been made publicly available via CRAN in the fractal package by Constantine
and Percival (2007). Many other tests exist. For example: those that measure correlation
between periodogram ordinates such as Hurd and Gerr (1991) and Dwivedi and Subba Rao
(2011), those that measure the discrepancy between a time-varying spectral estimate and its
‘closest’ stationary spectrum such as Gardner and Zivanovic (1991) and Dette et al. (2011),
and those that measure constancy of some Fourier spectral functional such as Priestley and
Subba Rao (1969), von Sachs and Neumann (2000) and Paparoditis (2010). See also An-
drieu and Duvaut (1996) for the specific alternative of a Gaussian cyclostationary process.
These tests all work with the Fourier spectrum or closely-related quantities.

Tests that work with other bases include Nason (2013), which utilized a wavelet spec-
trum, whereas Cardinali and Nason (2010) works with either wavelet or Fourier bases. An-
other recent alternative is Jin et al. (2015) which makes use of the Walsh basis. All these
tests have different operational characteristics but it has become evident that nonstationarity
can manifest itself in distinctly non-Walsh, non-Fourier and non-wavelet ways. For exam-
ple, simulations in Nason (2013) show that there are cases where (i) neither, (ii) both, or
(iii) one or the other of a wavelet or Fourier test successfully detect certain kinds of nonsta-
tionarity. Section 2 provides additional evidence as to why measuring in both the Fourier
and the wavelet directions alone is unlikely to be enough.

The tests mentioned above measure departures from a single type of representation:
either Walsh, Fourier or wavelet. A key contribution here is a new approach to testing
which looks for departures from multiple basis representations. Since our test can look in
more directions than one basis it should achieve higher power whilst retaining acceptable
size characteristics. In fact, we show this by examining theoretical power in section 5 and
via a comprehensive simulation study in section 6.

Section 3 introduces our first stationarity test based on wavelet packets using the ‘sig-
nificant Haar wavelet coefficient’ method introduced by von Sachs and Neumann (2000)
and verifies its theoretical credentials. In practice, this test relies on a hard-to-estimate vari-
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ance which sometimes results in poor empirical power. Section 4 circumvents this issue by
establishing asymptotic equivalence of the Section 3 wavelet packet statistic to the L2 test
statistic from Cardinali and Nason (2010) and Dette et al. (2011) but assesses significance
via a simple bootstrap method.

All our tests are encapsulated in the freeware R software package BootWPTOS which
also includes graphical tools to identify the location and scale of discovered nonstationari-
ties,

1.1 Background and notation

We assume a basic knowledge of wavelet theory but comprehensive treatments can be found
in Daubechies (1992), Chui (1997) or Burrus et al. (1997) for example. For wavelets and
signal processing, see Mallat (1998) or Flandrin (1998) and see Vidakovic (1999) or Nason
(2008) for their use in statistics.

Informally, the locally stationary Fourier (LSF) model from Dahlhaus (1997) represents
a (triangular array of) stochastic process(es) defined by:

Xt,T =

∫ π

−π
exp(iωt)At,T (ω)dξ(ω), (2)

for t = 1, . . . , T . The locally stationary wavelet (LSW) model from Nason et al. (2000)
represents the process (array) by:

Xt,T =
∞∑
j=1

∞∑
k=−∞

wj,k;T ψj,k(t)ξj,k, (3)

where {ψj,k(t)} is a set of discrete nondecimated wavelets (defined and extended below).
The exp(iωt) in (2) and the ψj,k(t) in (3) supply oscillation for the models at different fre-
quencies and scales, respectively. The dξ(ω) in (2) and {ξj,k} in (3) are uncorrelated zero
mean, unit variance random variables and a zero mean orthonormal increments process, re-
spectively (which could be Gaussian to create Gaussian processes). The functions At,T (ω)
and wj,t;T are time-varying amplitudes that cause the processes to be nonstationary if they
are not constant functions of t.

The usual, fundamental (and estimable) parameters underlying models (2) and (3) are
the time-varying spectrum f(t/T, ω) = |At(ω)|2 and the time-scale spectrum Sj(t/T ) ≈
w2
j,t/T .

The Fourier basis in (2) is well-known. The nondecimated discrete wavelets in (3) are
defined in Section 2 of Nason et al. (2000) by

Definition 1 (Nondecimated wavelets). Let {hk, gk} be the low and high pass quadrature
mirror filters used in the construction of the Daubechies (1992) compactly supported con-
tinuous time wavelets. The discrete wavelets ψj = {ψj,0, . . . , ψj,(Nj−1)} are compactly
supported of length Nj for scale j ∈ N obtained by using the formulae:

ψ1,n =
∑
k

gn−2kδ0,k = gn, for n = 0, . . . , N1 − 1, (4)
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and
ψj+1,n =

∑
k

hn−2kψj,k, for n = 0, . . . , Nj − 1, (5)

where Nj = (2j − 1)(Nh − 1) + 1, δ0,k is the Kronecker delta and Nh is the number of
non-zero elements of {hk}.

We include this definition only to extend it below. This section only provides minimal
detail on the LSF and LSW processes: for complete technical details see section 3.3 for
LSF and in Nason (2013) for LSW processes.

However, our key point is that both LSF and LSW models rely on a single basis for their
definition. The next section provides heuristics as to why multiple bases are important for
stationarity tests.

2 Choice of Basis and Stationarity Tests

This section justifies why basis choice is crucial for stationarity determination.

2.1 Empirical evidence

Nason (2013) and Cardinali and Nason (2013) report results of separate empirical stud-
ies comparing the PSR Fourier-based test with different types of wavelet-based tests. The
studies examined the same four nonstationary time series models, P1–P4, defined later in
Section 6.3.2. For example, Nason (2013) showed that the PSR test achieves high power
(100%) for P2 and P4 and low power (around 40%) for P1 and P3, whereas the wavelet-
based test achieves high power (> 94%) for P1 and P4, but low (17% and 1%) for P2 and
P3 respectively. Sometimes wavelet-based tests are more powerful, sometimes Fourier are
and sometimes they perform similarly. Results in Table 2 in Cardinali and Nason (2010),
using the same test statistic and the same bootstrap method of inference, strongly indicate
that the best test to use in a given situation depends on the kind of nonstationarity present
in a signal.

Overall, though, simulations are not definitive and testing software is also subject to
other sources of variation, such as choice of smoothing and other parameters. However,
simple theoretical heuristics, demonstrated next, also show that the detection basis is im-
portant.

2.2 Theoretical evidence: LSF analysis of LSW

Suppose we subject the LSW process Xt,T from (3) to a Fourier spectral analysis. For
example, apply the localized periodogram estimator as given in von Sachs and Schneider
(1996) with no tapering to obtain

IT (z, λ) =

∣∣∣∣∣
T−1∑
s=0

X[zT−(T/2)+s+1],T exp(−2πiλs)

∣∣∣∣∣
2

. (6)
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Then, taking the central component (CC) of (6) applied to the LSW process gives:

CC =
∑
j

∑
k

wj,k;T ξj,k

T−1∑
s=0

ψj,k([zT ]− T/2 + s+ 1)e−2πiλs

= e−2πiλ[−zT+T/2−1]
∑
j

∑
k

wj,k;T ξj,k

[zT ]+T/2∑
t=[zT ]−T/2+1

ψj,k(t)e
−2πiλt. (7)

Definition 1 shows that ψjk(t) is non-zero for 0 ≤ k−t ≤ Nj−1. Hence, in (7), for suitably
large T , the lower limit on the final sum is less than k−Nj +1 and the upper limit is greater
than k, or equivalently Nj − T/2 ≤ k ≤ T/2. Then the final summation is equivalent to
ψ̂j,k(λ) =

∑∞
−∞ ψj,k(t) exp(−2πiλt) the discrete Fourier transform of ψj,k(·) and hence:

CC = e−2πiλ[−zT+T/2−1]
∑
j

∑
k

wj,k;T ξj.kψ̂j,k(λ) = e−2πiλ[−zT+T/2−1]F̂ (λ), (8)

for some function F̂ (λ). To obtain the localized periodogram with no tapering we need to
form |CC|2 which gives IT (z, λ) = |F̂ (λ)|2 as the exponential part cancels. In summary,
under the right conditions, the time-localized Fourier periodogram of a time-varying LSW
process can effectively be independent of time z.

Under which conditions does this phenomenon occur? Examine the inequalities Nj −
T/2 ≤ k ≤ T/2 from above. If j is coarse scale thenNj is large and potentially the interval
[Nj−T/2, T/2] is very small, or even non-existent. However, if j is small, e.g. the smallest
value is j = 1, then N1 = Nh and the interval can be large, especially if T is large. So,
the conditions for the ‘time-independence’ of IT (z, λ) of a LSW process are most likely to
occur at the finer scales.

The conclusion is that quantities such as IT (z, λ) will not easily detect nonstationarities
if the LSW process is nonstationary at the finer scales. Intuitively, this makes sense because
the fine scale components of LSW processes have a large bandwidth, roughly [π/2, π) for
integer-sampled series, that is not efficiently representable by a few Fourier coefficients.

2.3 Theoretical evidence: LSW analysis of LSF

Suppose now that we examine the LSF process Xt,T = σ(t/T )Zt, where Zt is an iid
N(0, 1) sequence and σ(z) is a continuous function on (0, 1). TheXt,T is LSF by Dahlhaus
(1997, page 4, Example (i)) with transfer function A(z, λ) = σ(z)π−1/2. Now subject this
LSF process to a wavelet analysis: the finest scale Haar wavelet coefficients of Xt,T are
given by

d1,k = 2−1/2 [σ(k/T )Zt − σ{(k − 1)/T}Zt−1] .

Hence, the expectation of the raw wavelet periodogram at the finest scale I1,k = d2
1,k is

given by Ed2
1,k =

{
σ2
(
k
T

)
+ σ2

(
k−1
T

)}
/2. Similarly, at scale two, the expectation is

Ed2
2,k = 4−1

∑3
r=0 σ

2{(k − r)/T}. Let A be the inner product matrix of the Haar auto-
correlation wavelet as given in Nason et al. (2000). Then the evolutionary wavelet spectral
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estimate at the finest scale is given by:

Ŝ1(k/T ) =

log2(T )∑
j=1

A−1
1,jd

2
j,k. (9)

Substituting in actual approximate values for A−1
1,j we can obtain

EŜ1(k/T ) ≈ [σ2(k/T ) + σ2{(k − 1)/T}]/3− [σ2{(k − 2)/T}+ σ2{(k − 3)/T}]/11

which is not a good estimator of σ(z) as it smooths out variability. Hence, Ŝ1 would not be
good for detecting non-constant behaviour in σ(z). For this purpose it would be preferable
to use a good LSF spectral estimator such as the asymptotically unbiased estimator from
Neumann and von Sachs (1997).

2.4 Wavelet, Fourier or something else?

The discussion in sections 2.1–2.3 shows that success in testing for stationarity may depend
heavily on the choice of analysis basis. Normally, one does not know in advance which
basis offers the best chance of success. In the coming section, we develop a strategy that
implicitly exploits multiple bases, and which attempts to mimic the success of the true best
basis.

3 A Wavelet Packet Stationarity Test

3.1 Nondecimated wavelet packets and basis libraries

An improved test might be constructed using both wavelet and Fourier bases. However, this
seems limited as there exist basis libraries containing a wide selection of basis elements.
Let B denote a particular library and |B| denote the number of bases it contains. Let b ∈ B
denote a given basis and let |b| define the number of basis functions (packets) in b. The next
two sections construct stationarity tests relative to a basis b ∈ B.

We use the wavelet packet library, see Coifman and Wickerhauser (1992), Wickerhauser
(1994), Hess-Nielsen and Wickerhauser (1996), which, of course, includes the wavelet basis
as a special case. Each wavelet packet basis library depends on an underlying Daubechies’
wavelet and hence there are different libraries for different wavelets and each of those will
have different powers for detecting nonstationarities. Wavelet choice could be incorporated
into our scheme but, for definiteness, we restrict ourselves to a wavelet packet basis com-
puted with respect to a given particular compactly supported Daubechies’ wavelet.

There are many basis library types: wavelet packets are used here, but others could
be used resulting in tests with different operating characteristics. We actually use non-
decimated wavelet packets, defined below. The nondecimation is extremely important for
stationarity tests, but also for locally stationary time series models generally, see, e.g. Na-
son et al. (2000), Fryzlewicz et al. (2003); Van Bellegem and von Sachs (2004); Fryzlewicz
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(2005); Park et al. (2005); Borchi et al. (2006); Fryzlewicz and Nason (2006); Khoklov
et al. (2006); Woyte et al. (2006, 2007b,a); Van Bellegem and von Sachs (2008); Triantafyl-
lopoulos and Nason (2008); Fryzlewicz and Ombao (2009); Xie et al. (2009); Cardinali
and Nason (2010); Eckley et al. (2010); Sanderson et al. (2010); Eckley and Nason (2011);
Cho and Fryzlewicz (2012); Gott and Eckley (2013); Nason (2013). Nondecimation is also
known by other names such as the maximal overlap discrete wavelet transform see Percival
and Walden (2000) and used extensively.

The reason why nondecimation is vital for testing stationarity is so that nonstationari-
ties do not get missed in the gaps left by decimation inherent in regular wavelets or wavelet
packets. Decimated wavelet packets are defined on an implicit grid that has gaps which scale
dyadically and grow large quickly as we go from fine to coarse scales. Consequently, they
possess a preferred set of locations at which changes should take place. The methods we
construct, by being nondecimated, have no such preferred set of locations and, we believe,
are therefore more suitable for detecting changes at arbitrary and unknown locations. More
generally, nondecimated bases often result in more effective estimators, e.g. see Coifman
and Donoho (1995) and Nason and Silverman (1995) or Percival (1995), Gabbanini et al.
(2004) in conjunction with variance estimation and Cardinali (2008) in conjunction with
cross-covariance estimation. Nason et al. (2001); Nason and Sapatinas (2002) used non-
decimated wavelet packets to construct transfer function models between two time series to
enable prediction (or classification) of one time series from an explanatory time series.

We now extend Definition 1 from wavelets to wavelet packets.

Definition 2 (Discrete Non-decimated Wavelet Packets). The construction of discrete non-
decimated wavelet packets (DNWP) is identical to (4) and (5) except that the {gk} and {hk}
can both be replaced by either of {gk} or {hk} at each scale. The vectors produced by this
construction are referred to as discrete wavelet packets and denoted by ψ`,k, where ` refers
to a packet and can be written as the doublet ` = (j, i) where j refers to scale and i to the
index within that scale. The k index controls shift as in regular wavelets. Define the set of
packet indices by L = {` = (j,m) : m = 0 . . . , 2j − 1, j = 1, . . . , J}.

The DNWP construction process enables simple packet indexing. Starting from the
finest scale either the low-pass filter, hk, or the high-pass filter, gk, (as in (4)) can be applied.
The resulting coefficients for low-pass can be indexed by 0 and the high-pass by 1. Then,
both of these packet sets can then be further processed by low-pass, hk, or high-pass, gk
and hence the second finest coefficients can be indexed by 00, 01, 10 or 11. More generally,
the rth scale packets can be indexed by a binary string of length r. The ordering of wavelet
packets in this way is known as the Paley ordering; see Coifman and Wickerhauser (1993).

For regular wavelet packets, which are functions defined on R, rather than vectors as in
Definition 2, a basis, b ∈ B is a particular set of packets that forms an orthonormal basis
for LP (R) which corresponds to a subtree of the full binary packet tree where the leaves
represent the basis packets. For function estimation purposes we would require a complete
basis for representation, but for stationarity testing we merely require a selection of packets.
The nondecimated discrete wavelet packets will be used to focus on time series features to
be tested for stationarity. We now give a few pedagogical examples for those readers not
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Figure 1: Four wavelet packets derived from Daubechies (1992) least-asymmetric mother
wavelet with ten vanishing moments for T = 2048: (a.) (8, 1), (b.) (11, 8), (c.) (7, 6), (d.)
(3, 2). Drawn by the drawwp.default() function in WaveThresh.

familiar with wavelet packets.

Example 1. The scale j = 1 and j = 2 discrete Haar wavelets are given by ψ1 =
(1,−1)/

√
2 and ψ2 = (1, 1,−1,−1)/2 as in Nason et al. (2000). The two Haar wavelet

packets at scale j = 1 are ψ(1,1) = (1,−1)/
√

2 = ψ1 and ψ(1,0) = (1, 1)/
√

2. There
are four Haar wavelet packets at scale j = 2. They are ψ(2,0) = (1, 1, 1, 1)/2, ψ(2,1) =
(1, 1,−1,−1)/2 = ψ2 and ψ(2,2) = (1,−1, 1,−1)/2 and ψ(2,3) = (1,−1,−1, 1)/2.

Example 2. Figure 1 shows four wavelet packets derived from a Daubechies mother wavelet.
The figure gives an idea of the diversity of the time-frequency behaviour compared to the
Fourier or wavelet bases.

Remark 1. At each scale father wavelets correspond wavelet packets with index m = 0
and (regular) wavelets correspond to index m = 1. A standard wavelet basis, up to scale
J , can be obtained from a wavelet packet library by choosing wavelets at each scale from 1
to J and additionally the father wavelet at the coarsest scale. The regular wavelet basis is
described by the following packet indices {(1, 1), (2, 1), (3, 1), . . . , (J, 1), (J, 0)}.

3.2 Underlying Stochastic Model and Assumptions

To enable a rigorous development we now specify our underlying time series model.

Assumption 1 (Dahlhaus (1997)). Our time series are modelled as a sequence of stochastic
processes Xt,T , t = 1, . . . , T , a locally stationary (Fourier) process with transfer function
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A0 with representation

Xt,T =

∫ π

−π
A0
t,T (ω) exp(iωt)dξ(ω), (10)

where

(i) ξ is an orthonormal increments process on [−π, π) with ξ(ω) = ξ(−ω), Eξ(ω) = 0
and cov{dξ(ω), dξ(ν)} = δ(ω − ν)dωdν and

cum{dξ(ω1), . . . , dξ(ωk)} = η

 k∑
j=1

ωj

hk(ω1, . . . , ωk−1)dω1 · · · dωk,

where cum{·} denotes the cumulant of order k, |hk(ω1, . . . , ωk−1)| ≤ constk for all
k (with h1 = 0, h2(ω) = 1) and η(ω) =

∑
j∈Z δ(ω + 2πj) is the Dirac comb.

(ii) Let Π = [−π, π). There exists a positive constant K and smooth function A(u, ω) on
[0, 1]×Π which is 2π-periodic in ω, with A(u,−ω) = Ā(u, ω), such that ∀T

sup
t,ω

∣∣∣∣A0
t,T (ω)−A

(
t

T
, ω

)∣∣∣∣ ≤ KT−1, (11)

and (A0, A) are known as a close pair, see Cardinali and Nason (2010).

Further conditions are imposed on the function A by the following.

Assumption 2 (Neumann and von Sachs (1997)).

(i) The functionA(u, ω) has bounded total variation on [0, 1]×Π denoted by TV[0,1]×Π(A) <
∞;

(ii) supu TVΠ{A(u, ·)} <∞ and supω TV[0,1]{A(·, ω)} <∞;

(iii) supu,ω |A(u, ω)| <∞;

(iv) infu,ω |A(u, ω)| ≥ κ for some κ > 0.

Assumption 3. Let Â(u, s) := (2π)−1
∫

ΠA(u, ω)eiωsdω, s ∈ Z, u ∈ (0, 1). Assume Â is
well-defined and finite. This is a slightly weaker assumption on Â compared to Assumption 3
in Neumann and von Sachs (1997).

The equivalent definition forXt,T in von Sachs and Neumann (2000) uses Assumption 1
but also imposes continuity on A. We have chosen to use the less restrictive bounded varia-
tional assumptions as found in Neumann and von Sachs (1997). The time-varying spectrum
of Xt,T is given by f(u, ω) = |A(u, ω)|2.

Finally, we reuse the following cumulant assumption.
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Assumption 4 (Neumann (1994)). sup1≤t1≤T {
∑T

t2,...,tk=1 | cum(Xt1,T , . . . , Xtk,T )|} ≤
Ck(k!)1+γ for all k = 2, 3, . . . , where γ ≥ 0.

Remark 2. von Sachs and Neumann (2000) Remark 3.1 notes that Assumption 4 is satisfied
if {Xt} is α-mixing with coefficients α(s) ≤ K exp(−b|s|) and

E|Xt|k ≤ Ck(k!)ρ, (12)

for all k. Condition (12) is fulfilled for many distributions, for example, (Gaussian), expo-
nential, gamma and inverse Gamma, for appropriate choice of ρ, see also Neumann (1994).

Remark 3. We could have chosen to model Xt with the locally stationary wavelet (LSW)
processes of Nason et al. (2000) and below develop a parallel set of theory and tests.

Remark 4. The focus here is on second-order quantities and hence we assume EXt,T = 0
which is certainly satisfied by Assumption 1 and models such as the LSW processes. If a
real time series has a non-zero mean then it can be modelled, estimated and removed even
in locally stationary noise, see von Sachs and MacGibbon (2000) for example.

3.3 Blueprint of the stationarity tests

Suppose we wish to test Xt, t = 1, . . . , T for stationarity. Let L be a set of wavelet packet
basis functions. Define the nondecimated wavelet packet coefficients of {Xt}, with respect
to the discrete wavelet packet ψ`, ` ∈ L, by

d`,k =

T∑
t=1

Xtψ`,k−t, (13)

for all k ∈ Z. Define the raw wavelet packet periodogram of {Xt}, with respect to the
discrete wavelet packet ψ`, ` ∈ L,by

I`,k = d2
`,k, (14)

for k ∈ Z.
Our stationarity tests all relate to the constancy of the following b-spectrum.

Definition 3 (b-spectrum). Define the b-spectrum, β`(z), with respect to wavelet packet `,
` ∈ L, and z ∈ (0, 1) by

β`(k/T ) = E(I`,k), (15)

for k = 1, . . . , T and for all T ∈ N.

Nason et al. (2000) Proposition 4 showed for LSW processes, where ψ` in (13) is a
wavelet, that

E(Ij,k) = {AS(k/T )}` +O(T−1), (16)

where {Sj(z)} is the evolutionary wavelet spectrum (EWS) associated with a locally sta-
tionary wavelet process and A is a blurring matrix/operator. In definition 3 b-spectrum
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refers to blurred spectrum which, when ` ∈ L corresponds to a wavelet, is identical to the
quantity in Nason et al. (2000). Fryzlewicz and Nason (2006) denoted βj(k/T ) = E(Ij,k)
for wavelets and it extends here naturally to wavelet packets.

The next proposition establishes the nature of the b-spectrum for our locally stationary
series defined in Assumption 1.

Proposition 1. Let Xt,T be a locally stationary Fourier process as in Assumption 1 and let
β`(z) be its b-spectrum for some wavelet packet ` ∈ L. Then:

β`(z) =

∫ π

−π
f(z, ω)|ψ̂`(ω)|2dω +O(T−1), (17)

where ψ̂`(ω) =
∑

n ψ`,ne
−iωn is the Fourier transform of the discrete wavelet packet vector

ψ`.

Proof. See the appendix. A similar result for wavelets was established in von Sachs
et al. (1997) formula (35).

The b-spectrum is at the centre of our new stationarity tests. Clearly, Xt,T is second-
order stationary if and only f(z, ω) = f(ω) for all z ∈ (0, 1) if and only if β`(z) is a
constant function of z for any (and all) ` ∈ L.

Example 3 (Example 1 continued). The squared gains of the scale two Haar wavelet pack-
ets are shown in Figure 2 acting as bandpass filters whose union covers the frequency
range [0, π) and divide the range into approximately equal quadrants. The filters are also
orthogonal, i.e.

∑
k ψj,m,kψj,n,k = δm,n. At scale j the frequency domain is divided into

2j roughly-equal bandpass filters and, as such, the wavelet packet decomposition provides
and organized and coherent decomposition of the time-frequency plane essentially provid-
ing exhaustive (within the constraints of a finite discrete sequence) covering of that plane.

3.4 Haar wavelet coefficient stationarity test

Our first test evaluates the constancy of β`(z) by examining its Haar wavelet coefficients,
which is inspired by the method of von Sachs and Neumann (2000) who examined the
constancy of Fourier spectral estimates.

Formula (17) supplies the clue to the advantage of our technique and a key difference
from previous techniques. Rather than look at spectral estimates directly, as in von Sachs
and Neumann (2000), we look at wavelet packet filtered versions of the spectrum. The
ability of wavelet packets to split up the time-frequency plane permits us to hone in on
aspects of nonstationarity that might be obscured by focusing on the entire spectrum. Our
new method extends and improves on Nason (2013) also as we allow more diverse, but still
coherent, wavelet packet analysis of the spectrum compared to just using wavelets.

The Haar wavelet coefficients of β`(z) are given by

v
(`)
i,p =

∫ 1

0
β`(z)ψ

H
i,p(z)dz, (18)

11
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Figure 2: Squared gain functions, |ψ̂`(ω)|2 for the four scale two Haar wavelet packets:
solid: ` = (2, 0); dashed: ` = (2, 1); dotted: ` = (2, 2) and dot-dashed: ` = (2, 3).
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for i = 1, . . . , J , p = 0, . . . , 2i − 1 and {ψHi,p(t)}i,p are the usual Haar wavelets. Hence

Xt,T is stationary if and only iff v(`)
i,p = 0 for all i, p. To be precise our null hypothesis is

H0 : v
(`)
i,p = 0 for all i, p against the alternative HA : there exists i∗, p∗ such that v(`)

i∗,p∗ 6= 0.

As in Nason (2013) if v(`)
i∗,p∗ is nonzero then this is evidence for nonstationarities close to

t∗ = 2−i
∗
(p∗ + 1/2) operating at a length scale of 2−i

∗
. Hence, not only can an omnibus

test of stationarity be constructed, but one can identify its location t∗ and extent.

3.5 Haar wavelet coefficient test statistics and their properties

As in von Sachs and Neumann (2000) and Nason (2013) our test statistics consist of empir-
ical versions of v(`)

i,p given by:

v̂
(`)
i,p = 2−i/2

2i−1−1∑
r=0

I`,2ip−r −
2i−1∑
q=2i−1

I`,2ip−q

 , (19)

where Ij,k was defined in (14) and i, p have the same range as in (18).
As in those previous works, and for the theory below to hold, we need the following

assumption which later guides us as to which scales we can use in the (non-bootstrap) Haar
wavelet coefficient test.

Assumption 5. We only use coefficients v(`)
i,p at coarse enough scales i for which 2i = O(T ).

This assumption originates from von Sachs and Neumann (2000) who use it to control
the wavelet coefficients’ asymptotic bias. Another view is that approximate normality of the
coefficients only occurs at ‘coarse-enough’ scales, as it is these coefficients that are sums of
‘enough’ wavelet packet periodogram values specified by (19).

To utilize the statistics (19) in a test we first establish the following Lemma.

Lemma 1. Suppose that Assumptions 1–4 are satisfied. Then:

(i) Ev̂(`)
i,p = v

(`)
i,p + o(T−1/2),

(ii) var(v̂
(`)
i,p ) = 2T−1

∫ 1
0 β

2
` (z){ψHi,p(z)}2 dz +O(T−1),

(iii) | cumn(v̂
(`)
i,p )| ≤ Cn(n!)2+2γT−1(T−1/2)n−2,

all hold uniformly for `, i, p as above, where C <∞ is an arbitrary, but fixed, constant.

Proof: See the appendix.

Remark 5. The statement of Lemma 1 is identical to that in Nason (2013) and both are
slight adaptions of the statement of Lemma 3.2 from Neumann and von Sachs (1997).
However, the underlying quantities are completely different and the details of the proof
are different because (i) our Lemma deals with locally stationary (Fourier) processes with
spectra of bounded variation and (ii) the quantities underlying β`(z) are wavelet packets.

13



Asymptotic normality of the v̂(`)
i,p now follows.

Proposition 2. Suppose that Assumptions 1–4 hold. Let ∆T = K(log T )1/2 for any fixed
K <∞. Then:

P{±(v̂
(`)
i,p − v

(`)
i,p )/σ

(`)
i,p ≥ x} = {1− Φ(x)}{1 + o(1)}, (20)

holds uniformly in −∞ ≤ x ≤ ∆T with i, p in the range given in (18), where Φ(x) is the
standard normal CDF and σ(`)2

i,p = var(v̂
(`)
i,p ).

Proof: Proposition 4 directly parallels Proposition 3.1 from von Sachs and Neumann
(2000) and Proposition 1 from Nason (2013) and both rely on Proposition 3.1 from Neu-
mann and von Sachs (1997) and the properties established in Lemma 1.

We could now follow the established route of von Sachs and Neumann (2000) which
takesXt, forms its raw wavelet packet periodogram, I`,k, constructs empirical Haar wavelet
coefficients, v̂(`)

i,p and performs significance tests using the asymptotic normality result fur-
nished in Proposition 4. As in von Sachs and Neumann (2000) or Nason (2013) we have to
use some form of multiple test size control such as Bonferroni or false discovery rate due
to Benjamini and Hochberg (1995). Up to this point the innovation would be the use of
wavelet packets instead of wavelets and hence a potential power gain due to the extensive
range of wavelet packet basis functions (of which wavelets are a subset).

Other benefits of the Bonferroni approach are that it does not require knowledge of the
joint distribution of the wavelet coefficients and, related to this, results in a rather conserva-
tive test. In our context conservatism is a good thing as we would not want to force analysts
to use complicated nonstationary methods unless we absolutely have to. A further benefit of
the Bonferroni testing is that it is relatively simple to elicit the theoretical power properties
of the test, see Section 5.

Another possibility would be to use some combination of the v̂(`)
i,p coefficients to obtain

some kind of omnibus test. For example, using max`,i,p |v̂
(`)
i,p/σ

(`)
i,p | as the basis of a test

statistic and examining its asymptotic distribution to obtain critical values. Unfortunately,
all of these quantities require estimation of σ(`)

i,p which is known to be problematic. Hence,
the next section adopts a different tack by using the bootstrap which additionally permits us
to make use of the important finer scale coefficients.

4 A Bootstrap Test

Another recent test of stationarity (for wavelet or Fourier) was introduced by Cardinali and
Nason (2010). The underlying test statistic was also suggested by Dette et al. (2011) who
also established the statistic’s asymptotic normality to provide inference.

The wavelet version of the Cardinali and Nason (2010) test used the metric:

TC{Sj(z)} = J−1
J∑
j=1

∫ 1

0
{Sj(z)− S̄j}2 dz, (21)
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where S̄j =
∫ 1

0 Sj(z) dz to measure departures of Sj(z) from constancy and the notation
TC indicates a test statistic that looks for departures from constancy of the spectrum. A test
statistic was formed by estimating Sj(z) by an asymptotically unbiased estimator obtained
by applying the matrix A−1 to the wavelet periodogram in (16) and inserting it into (21).

There is a useful theoretical equivalence between the tests in Cardinali and Nason (2010)
and Nason (2013).

Proposition 3. The time series {Xt,T } is stationary iff the Haar wavelet coefficients of
{βj(z)}∞j=1 are all zero iff TC{Sj(z)} = 0 for j ∈ N.

Proof: See the appendix.
Although there is a theoretical equivalence, Cardinali and Nason (2013) indicate that the

TC bootstrap test has generally better empirical size and power characteristics compared to
the multiple Haar wavelet coefficient test using Bonferroni correction from Nason (2013).
There appear to be two reasons for this:

1. The empirical tests in von Sachs and Neumann (2000) and Nason (2013) both make
use of Assumption 5 to provide asymptotic normality for inference. This means that
only medium- or coarse-scale Haar wavelet coefficients of βj(z) from Nason (2013),
or f(u, ω) for von Sachs and Neumann (2000), are used in the stationarity test. The
test statistic, TC, in (21) implicitly used all scales including the finest.

2. von Sachs and Neumann (2000) and Nason (2013) both estimate each wavelet coef-
ficients’ variance using a global quantity. This variance is σ̂2

I in (3.6) from von Sachs
and Neumann (2000) and σ̂(`)

i,p in (9) in Nason (2013). These estimators enable the-
oretical establishment of the size of the test under H0, but they result in excessively
conservative tests. The reason being that nonstationarity, as well as inducing large
Haar wavelet coefficients of β` or f , also can cause spuriously large values for the
estimators σ̂2

I and σ̂(`)
i,p . Under the alternative hypothesis what is required is the local

variance of a particular wavelet coefficient and not the whole-series time-averaged
variance estimate appropriate for the stationary case (which is what the existing liter-
ature prescribes).

Taking these points together we can construct our second new test of stationarity as
follows.

Definition 4. Let L1 = {`1, . . . , `L} be a fixed set of wavelet packets where `p ∈ L for
p = 1, . . . , L for some L ∈ N.

(a) The wavelet packet measure is given by

TC [{β`(z)}`∈L1 ] = L−1
∑
`∈L1

∫ 1

0
{β`(z)− β̄`}2dz, (22)

where β̄` =
∫ 1

0 β`(z) dz.
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(b) The empirical wavelet packet test statistic T̂vS is obtained by substituting I`,k for its
expectation β`(k/T ) in (22) and replacing the integral by the sum over all possible
time values, k.

The next result quantifies the asymptotic properties of the test statistic under the station-
ary null hypothesis.

Proposition 4. Let {Xt,T } satisfy Assumptions 1–4 and, in addition, be second-order sta-
tionary with associated b-spectrum of (β`1 , . . . , β`L) for some fixed set of `p ∈ L for
p = 1, . . . , L. Let R`,k = I`,k − Ī` and S`,k = R2

`,k. Then µ` := E(S`,k) < ∞ and

σ2
` := var(S`,k) < ∞ and define µ = (TL)−1

∑L
i=1 µ`i and σ2 = L−2

∑L
i=1 σ

2
` . Then

T̂vS is asymptotically N(µ, σ2/T ).

Proof: See the appendix.
One can obtain a similar result using a modified test statistic by replacing β`(z), β̂` by

their projections onto a Haar wavelet basis of scale greater than i to satisfy Assumption 5.
Then Proposition 4 can be used to show asymptotic normality for the β estimates, χ2 for
the S`,k in Theorem 1 and hence overall asymptotic normality.

With the asymptotic normality result we could, in principle, use this to construct an
appropriate critical region for a relatively standard hypothesis test. However, accurate esti-
mation of µ` and σ2

` is challenging for reasons similar to why estimating σ̂2
I and σ̂(`)

i,p above
is challenging. It is in this situation that a bootstrap test can produce good results with the
bootstrap samples providing insurance by exploring the variability around estimates of µ`
and σ2

` . We adopt the bootstrap procedure from Cardinali and Nason (2010) which uses
the surrogate sampling techniques of Davies and Harte (1987) and Percival and Constan-
tine (2006) and the fractal package Constantine and Percival (2007). Our bootstrap test
algorithm is as follows.
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BootWPTOS:

1. The user specifies a set L1 of wavelet packet indices, and a number B of bootstrap
simulations.

2. The test statistic in (22) is computed on the data using L1 and its valued recorded as
T̂vS,1.

3. For b = 2, . . . , B we generate a surrogate series using the "phase" option of the
surrogate() function from the fractal package. We compute the test statistic
in (22) using L1 on the surrogate and record its value as T̂vS,b.

4. The p-value of the test is given by p = #b=2,...,B{i : T̂vS,b ≥ T̂vS,1}/B.

The "phase" option of the surrogate function implements the phase randomization
technique due to Theiler et al. (1992) which produces a simulated time series with the same
estimated Fourier spectral structure as the original series. Theiler et al. (1992) is more
appropriate than the LSW simulation technique used in Nason (2013) since, under the null
hypothesis of stationarity, the process has a Fourier/Cramer representation.

5 Theoretical Power

A hypothesis test’s theoretical power can be useful to compare tests, or elicit quantities such
as the minimum observable amount of nonstationarity for a given sample size, or what sam-
ple size is necessary to detect certain kinds of nonstationarity. This section derives expres-
sions for the theoretical power for three sample alternative hypotheses for the stationarity
tests introduced in Section 3.5.

Example: TVMA(1). The spectrum for a time-varying moving average model of order
one,Xt, with mean zero, unit variance innovations, is given by f(z, ω) = π−1|1+a(z)eiω|2.
Here, the function a : (0, 1)→ R controls the degree of nonstationarity over rescaled time,
z, and Xt is stationary if a(z) is a constant function of z ∈ (0, 1). For this example we
will let a(z) = c −mz where c,m ∈ R. Clearly, if m = 0 then Xt is stationary. We will
consider Haar wavelet packets and, for example, the Fourier transform for the finest scale
father wavelet is given by

ψ̂(1,0)(ω) = 2−1/2(1 + e−iω), (23)

and one of second-finest scale wavelet packets that is not the mother or father wavelet is
given by

ψ̂(2,2)(ω) = 2−1(1− e−iω + e−2iω − e−3iω), (24)

the other wavelet packets similarly defined. Using formula (17) the β`(z) functions for
these two packets and the spectrum f(z, ω) are — ignoring remainder terms —

β(1,0)(z) = 2(1 + c+ c2 −mz − 2cmz +m2z2), (25)
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and
β(2,2)(z) = 2c2 − c(4mz + 3) + 2m2z2 + 3mz + 2, (26)

respectively.
Next we calculate the Haar wavelet coefficients using formula (18). The Haar wavelet

coefficients of (25) are given by

v
(1,0)
i,p = 2−

5i
2
−1m

{
c2i+1 + 2i − (2p+ 1)m

}
, (27)

and of (26) are given by

v
(2,2)
i,p = 2−

5i
2
−2m

{
c2i+2 − 3 2i − 2(2p+ 1)m

}
, (28)

and, as expected, v(1,0)
i,p = v

(2,2)
i,p = 0 for m = 0 and Xt stationary.

Similarly, using Lemma 1(ii) we can show that

var(v̂
(1,0)
i,p ) = T−1

(
−5(2c+ 1)

(
c2 + c+ 1

)
23−im(2p+ 1) + 40

(
c2 + c+ 1

)2
− 5(2c+ 1)22−3im3[2p{p(2p+ 3) + 2}+ 1]

+ 5{2c(c+ 1) + 1}23−2im2{3p(p+ 1) + 1}
+23−4im4

{
5p(p+ 1)

(
p2 + p+ 1

)
+ 1
})
/5,

(29)

and

var(v̂
(2,2)
i,p ) = 2T−1

(
−15(4c− 3)8−im3[2p{p(2p+ 3) + 2}+ 1]

+ 5{12c(2c− 3) + 17}4−im2{3p(p+ 1) + 1}
− 15(4c− 3){c(2c− 3) + 2}2−im(2p+ 1) + 15{c(2c− 3) + 2}2

+3 41−2im4
{

5p(p+ 1)
(
p2 + p+ 1

)
+ 1
})
/15.

(30)

Similar formulae can be derived for other packets.
For a single Haar wavelet coefficient for the wavelet packet (1, 0), e.g., and using the

asymptotic normality result of Proposition 4 the approximate power, for large T , of the size
α test is given by:

ρ(1,0)(α, T, i, p) = 1 + Φ
{
−Cα − T 1/2v

(1,0)
i,p /s

(1,0)
i,p

}
− Φ

{
Cα − T 1/2v

(1,0)
i,p /s

(1,0)
i,p

}
,

(31)
where Cα is the usual critical value Cα = Φ−1(1− α/2) and s(`)2

i,p = T var(v̂
(`)
i,p ).

Using the Bonferroni method of multiple hypothesis test size control, the overall power
of the test of stationarity using a collection of Haar wavelet coefficients associated with a
single packet, e.g. (1, 0) is given by

P(1,0)(α, T ) = 1−
∏

(i,p)∈I

{1− ρ(1,0)(α/|I|, T, i, p)}, (32)
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Figure 3: Left: Power function P(2,2)(α, T ). Right: Ratio of power functions
P(1,1)(α, T )/P(2,1)(α, T ). Here α = 5%, T = 512 and number of tests |I| = 6 in both
cases.

where I is the set of Haar coefficients used in the test and |I| is the number of coefficients
used. Given the complicated form of quantities like (27) and (29) it does not seem likely
that a simple immediately interpretable formula for the overall power, P(1,0) exists although
it can be calculated exactly.

For example, Figure 3 shows a plot of a power function and the ratio of two power
functions. In the left plot of Figure 3 the power reaches high values of 40–50% when
(c,m) = (−0.5,−1) and (c,m) = (0.5, 1) respectively. Further, the power is 5%, equiv-
alent to the size of the test, when m = 0 and the underlying process is stationary as one
would expect. The right plot in Figure 3 shows the ratio of power functions for packets
(1, 1) and (2, 1) and shows that the former test is about twice as powerful as the latter for
the parameter values of (c,m) = (−0.5,−0.5), e.g.

Example: Piecewise stationary with single jump discontinuity. For this example, sup-
pose the time-varying spectrum is given by

f(z, ω) =

{
f1(ω) for 0 ≤ z < 1

2 ,

f2(ω) for 1
2 ≤ z < 1.

(33)

Then using (17) and ignoring remainders means that β`(z) = K
(`)
1 for 0 ≤ z < 1/2 and

β`(z) = K
(`)
2 for 1/2 ≤ z < 1 where K(`)

i =
∫ π
−π fi(ω)|ψ̂`(ω)|2 dω for i = 1, 2. As

the breakpoint has been deliberately set at z = 1/2 the only non-zero wavelet coefficient
is v0,0 = {K(`)

1 −K
(`)
2 }/2. The variance of the (0, 0) Haar wavelet coefficient is given by

Lemma 1(ii) as

var(v̂
(`)
0,0) = 2T−1

∫ 1

0
β2
` (z)φ(z)dz = 2T−1

∫ 1

0
β2
` (z) dz = 2T−1(K

(`)2
1 +K

(`)2
2 ). (34)

Now define ∆ = 1
2(K

(`)
1 −K

(`)
2 ){K(`)2

1 +K
(`)2
2 }−1/2, which is a normalised measure of the

jump between the first half of the spectrum and the second. Then, it can be shown that the
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power function with NT Haar wavelet coefficient tests, of overall size α, with Bonferroni
correction, sample size T is given to a high degree of approximation by

P(`)(α, T ) = 1−
(

1− α

NT

)NT−1 {
Φ(Cα/NT

− T 1/2∆)− Φ(−Cα/NT
− T 1/2∆)

}
,

(35)
where the last term in the product corresponds to the power associated with the single non-
zero Haar wavelet coefficient.

Equation (35) shows that, for a general nonstationary alternative f(z, ω), every ex-
tra non-zero wavelet coefficient causes terms in the product to change from 1 − α/NT to
Φ(Cα/NT

− T 1/2∆i,p)−Φ(−Cα/NT
− T 1/2∆i,p). This causes the asymptotic power to be

equal to one in each of these cases. Hence, this kind of test is statistically consistent.
Theoretical power comparison with Dette et al. (2011). Here we compare the theoretical

power of our packet test with theD2 test from Dette et al. (2011). Their Example 1 considers
the TVMA(2) process Xt,T = cos(2πt/T )Zt − (t/T )2Zt−1, where var(Zt) = σ2 is a
stationary white noise process. The nonstationary spectrum associated with this alternative
hypothesis is given by:

f(z, ω) = {cos(2πz)2 − 2z2 cos(2πz) cos(ω) + z4}. (36)

Their test criterion is the minimal distance D2 = ming
∫ π
−π
∫ 1

0 {f(z, ω)− g(ω)}2 dzdω and
its minimizing function is shown to be g(ω) = 7/(20π)− cos(ω)/(2π3). Working through
the asymptotic theory in Dette et al. (2011) Section 3 we can use their asymptotic normality
result for their test statistic, D̂2

T , from Theorem 2 to show that for T = 128, α = 0.05 that
the theoretical power is 72.3%. For T = 512 this increases to 91.9%. This assumes that we
choose the ‘number of blocks’ parameter M = 8 as suggested in their Section 4.1.1.

For our test, we can derive β`(z) exactly for the alternative hypothesis spectrum (36)
for each packet `, e.g., β(2,2)(z) =

{
cos(4πz) + 3z2 cos(2πz) + 2z4 + 1

}
/2. We can also

derive v(`)
i,p and var(v̂

(`)
i,p ) analytically although the expressions are long and complicated.

Using these we can form exact expressions for the analytical power of any combination of
Haar wavelet coefficients as we did earlier in this section. For the test in Section 3.4 using
the two finest scales of Haar wavelet coefficients with α = 0.05 and T = 128 the power
for each individual packet test is P(1,0)(0.05, 128) = 62.2%, P(1,1)(0.05, 128) = 80.0%,
P(2,0)(0.05, 128) = 75.6%, P(2,1)(0.05, 128) = 61.1%, P(2,2)(0.05, 128) = 86.2% and
P(2,3)(0.05, 128) = 71.9%. For T = 512 the theoretical power for each packet is greater
than 99.93%. So, for T = 128, four out of the six packets in our test have greater power
than the D2 test and the remaining two packets have power within 12%. For T = 512 all
packets have greater power. Hence, a packet-based test can produce superior results when
compared to the D2-based statistic.

Importantly, the theoretical power of wavelet packets that are not wavelets (e.g. ` =
(2, 2)) is greater than that of the wavelets alone. Hence, there is an advantage in using a
wavelet packet based test compared to one based on wavelets alone. This theoretical fact is
further supported by simulations in the next section.
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6 Example and Simulations

6.1 Infant Electrocardiogram Data

The Infant Electrocardiogram data was originally analyzed in Nason et al. (2000, Section
4.2) and their first differences analysed in Nason (2008, Section 5.3.7). From the time series
plot one might think that the series is obviously non-stationary but it is not impossible for
stationary time series models to mimic much of the behaviour of such series and hence
the need for an objective test. The first differences were tested for stationarity in Nason
(2013) and a plot indicating the location and extent of the nonstationarities arising from the
significant Haar coefficients was presented in Figure 3 of that paper.

The plots produced here are similar except that we produce one plot per wavelet packet
selected. Figure 4 shows the differenced infant electrocardiogram time series (in grey)
with significant Haar wavelet coefficients superimposed as double-headed arrows. We first
executed the BootWPTOS ‘omnibus’ test of stationarity from Section 4 on all packets L1 =
{` = (j,m) : j = 1, . . . , 3;m = 1, . . . , 2j − 1}, i.e. all 11 (non-father wavelet) wavelet
packets at scales j = 1, . . . , 3 which resulted in a very small p-value much less than 0.01.
We then selected four particular packets: (1, 1), (2, 2), (2, 3) and (3, 5) and applied the Haar
wavelet coefficient test from Section 3.4 to each one. So, for example, the top-right plot in
Figure 4 corresponds to packet (2, 2): wavelet packet two at the second-finest scale (which
is not a wavelet). For this plot there are three significant Haar wavelet coefficients, v̂(2,2)

5,22 at

resolution level 5 and v̂(2,2)
6,43 , v̂

(2,2)
6,45 at resolution level 6. The other three plots correspond to

three other highly significant packets.
All of the plots identify nonstationarities around t = 1400; these were identified also

by the ‘wavelet-only’ plot in Figure 3 of Nason (2013). The bottom-right plot of Figure 4
also identifies nonstationarities around t = 500, and these too were identified by Figure 3
of Nason (2013). However, the wavelet packet test here also additionally identifies some
plausible nonstationarities at about t = 1600 (bottom two plots) and t = 1750 (top left,
bottom right).

6.2 Size Simulations and Comparisons

Nason (2012, 2013) presented a comprehensive range of simulations to evaluate the empir-
ical size and power characteristics of stationarity tests for time series with sample sizes of
29 = 512. In particular, they compare the Priestley-Subba Rao (PSR) test with the new test
in Nason (2013). Here, we repeat these simulations for our new testing procedure for two
cases (A) LA = {(1, 1), (2, 1), (3, 1)}, wavelets at the first three finest scales and (B)

LB = {(1, 1), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7)},

all wavelet packets at the first three finest scales apart from the father wavelet coefficients.
Nason (2012, 2013) simulated data from a number of stationary models using Gaussian

innovations and assessed how often their tests rejected the null hypothesis. The models are:

S1 iid standard normal;
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Figure 4: Plots identifying significant Haar wavelet coefficients, v̂(`)
i,p , that reject the null

hypothesis of stationarity for four different wavelet packets, `. Grey time series are first
differences of infant electrocardiogram data (dBabyECG). Right-hand axis indicates scale
of discovered Haar wavelet coefficients, i.
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Table 1: Simulated size estimates (%) for stationary Gaussian models T = 512 based on
1000 simulations and B = 1000 with 5% nominal power.

From Nason (2013) BootWPTOS
Model PSR HWTOS LA LB

S1 5.6 4.3 5.3 5.7
S2 12.4 4.0 10.6 11.5
S3 6.2 20.3 5.3 5.6
S4 6.0 3.4 4.5 4.9
S5 6.5 0.7 5.2 5.7
S6 7.5 0.1 5.3 6.6
S7 23.9 7.3 5.3 5.3

S2 AR(1) model with AR parameter of 0.9 with standard normal innovations;

S3 As S2 but with AR parameter of −0.9;

S4 MA(1) model with parameter of 0.8;

S5 As S4 but with parameter of −0.8.

S6 ARMA(1, 0, 2) with AR parameter of -0.4, and MA parameters of (−0.8, 0.4).

S7 AR(2) with AR parameters of α1 = 1.385929 and α2 − 0.9604. The roots associated
with the auxiliary equation, see Chatfield (2003, page 44), are β1 = β̄2 = 0.98eiπ/4.
This process is stationary, but close to the ‘unit root’: a ‘rough’ stochastic process
with spectral peak near π/4.

The empirical size values are shown in Table 1 and demonstrates that our new BootWPTOS
tests have superior size characteristics compared to both the PSR and HWTOS tests. The
ranges of PSR and HWTOS are (5.6, 23.9) and (0.1, 20.3) respectively whereas the ranges
for the BootWPTOS tests, (4.5, 10.6) and (4.9, 11.5), are much smaller and closer to 5%.
A notable outlier is the poor calibration of the wavelet packet and PSR tests in response to
S2. We speculate that this is due to the dominant low-frequency behaviour of the S2 process
which might mask as trend, which none of these tests are designed to handle without trend
removal, as mentioned in Remark 4 in Section 3.3. The empirical sizes of the BootWPTOS
tests are more uniformly closer to the nominal size of 5%.
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Table 2: Simulated power estimates (%) for models (4.6)–(4.10) with a nominal size of 5%
based on 1000 simulations each with B = 200 bootstrap simulations.

Model
Method (4.6) (4.7) (4.8) (4.9) (4.10)

T = 256
DPV11 82.8 68.1 89.9 20.7 74.0
HWTOS 37.6 28.6 31.7 37.4 37.8

BootWPTOS 96.4 93.2 96.0 52.4 99.7

T = 512
DPV11 98.6 94.3 99.7 27.7 95.1
HWTOS 73.5 66.5 85.7 78.9 99.6

BootWPTOS 100 100 100 78.2 100

T = 1024
DPV11 100 99.9 100 38.6 99.0
HWTOS 99.9 99.7 100 100 100

BootWPTOS 100 100 100 94.4 100

6.3 Simulated Power Comparisons

6.3.1 Comparisons to Dette et al. (2011) and Nason (2013)

Some nonstationary alternatives specified by Dette et al. (2011) are given by

(4.6) Xt,T = 1.1 cos{1.5− cos(4πt/T )}Zt−1 + Zt,

(4.7) Xt,T = 0.6 sin(4πt/T )Xt−1 + Zt,

(4.8) Xt,T = (0.5Xt−1 + Zt)I{[1,T/4]∪[3T/4,T ]}(t)

+ (−0.5Xt−1 + Zt)I[T/4+1,3T/4](t),

(4.9) Xt,T = (−0.5Xt−1 + Zt)I{[1,T/2]∪[T/2+T/64+1,T ]}(t)

+ 4ZtI[T/2+1,T/2+T/64](t),

where IA(t) denotes the indicator function of a set A and the equation labels are those
specified in Dette et al. (2011). The final model we will consider is the following locally
stationary wavelet process:

(4.10) Xt,T =
T−1∑
k=0

w1(k/T )ψ1,k−tZ1,k +
T−1∑
k=0

w2(k/T )ψ2,k−tZ2,k,

where w1(x) = 0.6 cos(4πx), w2(x) = 0.8x2 and ψ1,·, ψ2,· are the finest and second-
finest scale nondecimated Haar discrete wavelets from Nason et al. (2000). In all of these
models Zt, Z1,k, Z2,k are Gaussian white noise with mean zero and variance one. Ta-
ble 2 shows simulations where the method from Dette et al. (2011) beats the single basis
wavelet test (HWTOS) for all models apart from (4.9). However, the new wavelet packet
test, BootWPTOS, dominates both HWTOS and the test from Dette et al. (2011). Here the
BootWPTOS tests uses the four, five and six finest packet scales with all packets for sample
sizes of T = 256, 512 and 1024 respectively.
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Table 3: Simulated power estimates (%) for models P1–P4 with nominal size of 5% based
on 1000 simulations and B = 1000.

From Nason (2013) BootWPTOS
Model PSR HWTOS LA LB

P1 37.2 99.7 99.3 99.7
P2 100 17.3 74.9 83.5
P3 44.3 1.3 17.2 22.5
P4 100 94.8 99.1 100

6.3.2 Comparisons to PSR and Nason (2013)

The models are:

P1 Time-varying AR model Xt = αtXt−1 + εt with iid standard normal innovations and
the AR parameter evolving linearly from 0.9 to -0.9 over the 512 observations.

P2 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for j > 1 and
S1(z) = 1

4 − (z − 1
2)2 for z ∈ (0, 1). This process is, of course, a time-varying

moving average process.

P3 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for j > 2 and S1(z)
as for P2 and S2(z) = S1(z + 1

2) using periodic boundaries (for the construction of
the spectrum only).

P4 A LSW process based on Haar wavelets with spectrum Sj(z) = 0 for j = 2, j > 4 and
S1(z) = exp{−4(z− 1

2)2}, S3(z) = S1(z− 1
4), S4(z) = S1(z+ 1

4) again assuming
periodic boundaries.

Spectra and single realisations for these processes are displayed in Nason (2012). Table 3
shows that the BootWPTOS test based on wavelet packets LB is more powerful than the
BootWPTOS test based on wavelets alone (LA). Secondly, our new BootWPTOS test
dominates HWTOS for these simulations. So, we compare PSR to BootWPTOS LB: (P1)
BootWPTOS LB dominates; (P2) PSR dominates, but the BootWPTOS is not far behind
with 83.5%, considerably better than 17.3% from HWTOS; (P3): None of the three tests is
really impressive; PSR performs better than BootWPTOS LB , which is itself much better
than the 1.3% from HWTOS; (P4) both perform extremely well.

Our overall conclusion from the size and power simulations is that BootWPTOS LB
appears to be more stable with empirical size values closer to the nominal. However, at
the same time, BootWPTOS LB exhibits excellent power properties in many, but not all,
situations.

7 Conclusions and Further Work

This article introduces two new tests of second-order stationarity based on assessing the
constancy of a wavelet packet periodogram (the b-spectrum). Two forms of assessment
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are proposed: one via Haar wavelet coefficients of the periodogram and one using an L2

norm. Theoretical and empirical investigation shows superior power characteristics of the
new wavelet packet based tests whilst still retaining good control of statistical size. We
also present an R software package, BootWPTOS, which carries out the tests and pro-
vides graphical depiction of the location and extent of the nonstationarities. We intend that
BootWPTOS be made freely available on the CRAN R software archive in due course.

The current work assumes the use of a fixed mother wavelet (underlying wavelet and
wavelet packet methods) and also a fixed choice of wavelet packet basis functions. An
interesting question for future study is whether it is possible to construct a method that
adaptively chooses the best wavelet packet basis functions to use to test for stationarity and
to develop theory for increasing numbers of packets as T increases. Another interesting
possibility is whether it is possible to use the bootstrap and the asymptotic normality re-
sults in a hybrid method: the bootstrap is slower than the methods of inference using the
asymptotic normality. Might one use asymptotic normality tests to quickly identify packets
of interest, followed by a bootstrap to validate and, perhaps, refine the test? Of course, such
a more complex two-stage procedure would require careful and rigorous examination of its
size and power characteristics.
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A Appendix

A.1 Proof of Proposition 1

The proof proceeds as follows with z = k/T for z ∈ (0, 1) and some k ∈ Z:

β`(z) = E[Ij,k] = E[|dj,k|2] (37)

=
∑
t

∑
s

ψ`,k−tψ`,k−sE[XtXs] (38)

=
∑
t,s

ψ`,k−tψ`,k−s

∫ π

−π

∫ π

−π
A0
t,T (ω)A0

s,T (ν)ei(ωt−νs)E[dξ(ω)dξ(ν)]

=
∑
t,s

ψ`,k−tψ`,k−s

∫ π

−π
A0
t,T (ω)A0

s,T (ω)eiω(t−s)dω, (39)
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as {ξ(ω)} is an orthonormal increments process. Using the fact that A0 is in a close pair
with A and the continuity of A we obtain:

β`(z) =
∑
t,s

ψ`,k−tψ`,k−s

∫ π

−π

{
A

(
k

T
, ω

)
+O(T−1) TV[0,1]×Π(A)

}
(40)

×

{
A

(
k

T
, ω

)
+O(T−1) TV[0,1]×Π(A)

}
eiω(t−s)dω (41)

= U + V +W, (42)

using similar arguments to the bounding of |R(1,1)
T | on page 66 of Neumann and von Sachs

(1997), where

U =

∫ π

−π

∣∣∣∣A( kT , ω
)∣∣∣∣2∑

t

ψ`,k−te
iωt
∑
s

ψ`,k−se
−iωsdω (43)

=

∫ π

−π
f(z, ω)|ψ̂`(ω)|2dω, (44)

as
∑

s ψ`,k−se
−iωs =

∑
n ψ`,ne

−iω(k−n) = e−iωk
∑

n ψ̄`,ne
−iωn = e−iωkψ̂`(ω) since

the discrete wavelet packets are real-valued (in this case). Similarly,
∑

t ψ`,k−te
iωt =

eiωk
∑

n ψ`,ne
−iωn = eiωkψ̂`(ω). In forming the product of these two terms the phase

terms cancel leaving |ψ̂`(ω)|2 as required.
The order of magnitude of the V term can be established by looking at the product of

A(k/T, ω) from (40) and the O(1/T ) term from (41) (and vice versa, hence the 2 in the
next expression):

|V | ≤ 2

∣∣∣∣∣∑
t,s

ψ`,k−sψ`,k−tO(T−1) TV[0,1]×Π(A)

∫ π

−π
A

(
k

T
, ω

)
eiω(t−s)dω

∣∣∣∣∣
= O(T−1), (45)

by Assumption 1, that ψ`,n are compactly supported sequences and ` ∈ L is fixed. The order
of magnitude in the cross-term, W , from the remainders in (40) and (41) can be established
as follows:

W =
∑
s,t

ψ`,k−sψ`,k−tO(T−2) TV[0,1]×Π(A)2

∫ π

−π
eiω(t−s)dω, (46)

and using
∫ π
−π e

iωtdω = 2 sin(πt)/t = 2πsinc(πt) gives:

|W | = 2πTV[0,1]×Π(A)2O(T−2)
∑
s,t

ψ`,k−sψ`,k−t|t−k||s−k| sinc{π(t−s)} = O(T−2),

(47)
again due to the compact support of the discrete wavelet packets. Putting together U, V and
W together establishes the result.
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A.2 Proof of Lemma 1

The proof of (i) follows the same pattern of reasoning as that for Lemma 1(i) in Nason
(2013), except we need now additionally to verify that β`(z) is a function of bounded varia-
tion for every wavelet packet ` ∈ L. Note that β`(z) has a finite and bounded first derivative
because, by Assumption 2(iii), A is bounded; moreover, ψ̂`(ω) can be seen to be bounded
by invoking Lemma 2.28 of Nielsen (1999) and using standard Fourier estimates.

For part (ii) we can write v̂(`)
i,p as

v̂
(`)
i,p =

∑
r

ψHi,rI`,2ip−r =
∑
r

ψHi,rd
2
`,2ip−r (48)

=
∑
r

ψHi,r

(∑
t

Xtψ`,2ip−r−t
∑
s

ψ`,2ip−r−s

)
(49)

=
∑
t

∑
s

XtXs

∑
r

ψHi,rψ`,2ip−r−tψ`,2ip−r−s (50)

=
∑
t

∑
s

XtXsmt,s, (51)

where the ψH are Haar wavelets and

mt,s =
∑
r

ψHi,rψ`,2ip−r−tψ`,2ip−r−s, (52)

which depends on `, p and i also. It is immediate that M = (mt,s)t,s is a symmetric
operator.

Hence, v̂(`)
i,p satisfies the conditions for Lemma 3.1 of Neumann and von Sachs (1997)

which states that if Xt satisfies Assumptions 1–5 then v̂
(`)
i,p = ηT = XTMX with M

symmetric, and if we let ξT = Y TMY where Y ∼ N(0, cov(X)) then:

cumn(ηT ) = cumn(ξT ) +Rn, (53)

where
Rn ≤ 2n−2C2n{(2n)!}1+γ max

s,t
{|Ms,t|}M̃ ||M ||n−2

∞ , (54)

and cumn |ξT | is bounded, see Neumann and von Sachs (1997). So far, the development
for the proof of (ii) parallels symbolically that in Nason (2013). However, the situation
is somewhat different here because in this article the ψ` are wavelet packets and not just
wavelets. So, the quantities in (52) and (54) need to be verified for wavelet packets.

The matrix M is banded in that mt,s = 0 if s, t < 2i(p − 1) + 2 − N` or s, t > 2ip
where N` is the number of nonzero entries in the discrete wavelet packet vector ψ` (the
packet vectors are compactly supported). The remaining quantities satisfy maxs,t{Ms,t} =
O(T−1/2), ||M ||2 ≤ ||M ||∞ = O(T−1/2) and M̃ = O(T−1/2). This can be seen by
replacing wavelets by wavelet packets in (a), (b) and (c) of the proof of Lemma 1(ii) from
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Nason (2013) and nothing that the wavelet packets are also bounded and compactly sup-
ported.

For part (iii) we use Lemma 3.1 from Neumann and von Sachs (1997) together with
Assumption 4 to verify:

λmax(M)λmax{cov(X)} = O(T−1/2)
∑

1≤t≤T
{cov(Xs, Xt)} = O(T−1/2), (55)

where λmax(M) is the maximum eigenvalue of M using the estimates from the norm-
quantities of M given in the proof to part (ii) above and Neumann (1994).

A.3 Proof of Proposition 3

It is the case that:

TC{Sj(z)} = J−1
T∑
t=1

(St − S̄)T (St − S̄) (56)

= J−1
T∑
t=1

(βt − β̄)T (A−1)TA−1(βt − β̄), (57)

where St is the vector {S1(t/T ), . . . , SJ(t/T )}T and S̄ = T−1
∑T

t=1 St, and similarly for
βt and β̄. Nason et al. (2000) Theorem 1 established that, for all Daubechies’ compactly
supported wavelets, all the eigenvalues of A are positive. Hence, the norms induced by
TC{Sj(z)} and TC{βj(z)} are equivalent. Hence, Xt is stationary iff the wavelet coeffi-
cients of {βj(z)}Jj=1 are all zero iff TC{Sj(z)} = 0.

A.4 Proof of Proposition 4

Without loss of generality we will consider a single ` ∈ L the result being a simply extended
for the average over a finite collection of ` ∈ L via Lindeberg’s theorem, see Billingsley
(1995) page 359. For the asymptotic normality we merely need to check Lindeberg’s con-
dition in a similar fashion to the proof of Proposition 10.3.2 from Brockwell and Davis
(1991). The mean and variance of S` are finite due to Assumption 4 and the fact that the
discrete wavelet packets are compactly supported. Define s2

T =
∑T

i=1 σ
2
` = Tσ2

` . For any
ε > 0

lim
T→∞

(Tσ2)−1
T∑
i=1

E
{

(S`,i − µ`)2I(|S`,i − µ`| > εsn)
}

(58)

= σ−2 lim
T→∞

E
{

(S`,1 − µ`)2I(|S`,1 − µ`| > εT 1/2σ)
}

= 0. (59)
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