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Abstract

This paper analyzes the correlation between the fluctuations of the electrical power generated
by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical
power time series from a large collection of photovoltaic inverters of a same plant is an impor-
tant contribution in the context of models built upon simplified assumptions to overcome the
absence of such data.

This data set is divided into three different fluctuation categories with a clustering proce-
dure which performs correctly with the clearness index and the wavelet variances. Afterwards,
the time dependent correlation between the electrical power time series of the inverters is esti-
mated with the wavelet transform. The wavelet correlation depends on the distance between
the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time
scales below one minute are low without dependence on the daily fluctuation level. For time
scales above 20 minutes, positive high correlation values are obtained, and the decay rate with
the distance depends on the daily fluctuation level. At intermediate time scales the correlation
depends strongly on the daily fluctuation level.

The proposed methods have been implemented using free software. Source code is available
as supplementary material.

Keywords: irradiance and electrical power fluctuation, wavelet analysis, wavelet variance,
wavelet cross-correlation.

Nomenclature

a, b, c Coefficients of the exponential decay model.

D̃j jth level detail of an MRA with a MODWT.

γτ,XY(λj) Wavelet cross-covariance of two stochastic processes Xt and Yt for scale λj and lag τ.

γXY(λj) Wavelet covariance with lag zero.
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GCR Ground cover ratio

GRR Ground requirement ratio

λj Scale j of a wavelet transform.

MODWT Maximum Overlap Discrete Wavelet Transform

MRA Multiresolution analysis

ν2
X,j Wavelet variance of the scale λj.

ρτ,XY(λj) Wavelet cross-correlation of two stochastic processes Xt and Yt for scale λj and lag τ.

ρXY(λj) Wavelet correlation with lag zero.

SDF Spectral density function.

σ2
X Variance of the time series Xt.

S̃J0 J0th level smooth of an MRA with a MODWT.

Ṽ N × N real-valued MODWT scaling matrix.

W̃ N dimensional vector of MODWT coefficients.

W̃ N × N real-valued MODWT wavelet matrix.

WT Wavelet transform

X N dimensional vector containing a real-valued time series.

Xt Real-valued time series.

1. Introduction

Short-term fluctuations in the power generated by large PV plants due to changes in cloud
cover can negatively affect utility grid stability and reliability. This fact, together with the high
levels of penetration achieved by PV power generation sector over the last few years, has alerted
grid operators in some countries, promoting research initiatives to study these fluctuations. The
main efforts are trying to quantify the smoothing effect in fluctuations registered not only in one
PV plant, but also in an ensemble of geographical dispersed large PV plants and to understand
the temporal and spatial relationship between fluctuations.

A bibliographic review reveals the growing concern about this problem. Otani et al. [1]
showed that for distances between the locations greater than 5 km, observed daily irradiances
fluctuations with 1 min resolution are essentially uncorrelated. Later on, the same authors pro-
posed a method to estimate the largest power fluctuation during a month as the product of the
standard deviation fluctuation by a so called “largest fluctuation coefficient” [2]. Wiemken et
al. [3] worked with one year of 1 min data from 100 PV sites (totalling 243 kWp) spread over
Germany. They observed that, at that scale, power fluctuations of the normalised ensemble
power are reduced to 10%. Hoff et al. [4] perform a mathematical analysis which quantifies the
variability reduction in power fluctuation from a fleet of PV systems, ranging from individual
systems to a set of distributed systems. A relationship between the variance of the fluctuations
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of a single PV plant and an ensemble is suggested. Subsequently, they introduce a novel ap-
proach to estimate the maximum short-term output variability from an arbitrary fleet of PV
systems [5], proposing the necessity of real power data to test and validate the models.

Some contributions to the field by the authors have brought an empirical expression ob-
tained via real measurements to compare the fluctuation attenuation because of both the size
and the number of PV plants grouped [6, 7]. Observed short-term fluctuations are essentially
uncorrelated for distances between PV plants over 6 km. However, the authors remark the need
to examine the smoothing effect below that distance.

On the other hand, the wavelet transform (WT) is used in [8] to show that the irradiance and
power time series are nonstationary processes whose behaviour resembles that of a long mem-
ory process. The combination of a wavelet variance analysis with the long memory spectral
exponent shows again that a PV plant behaves as a low-pass filter.

This paper contributes to previous findings with the analysis of experimental data from a
large PV plant. The data comprises almost 2 years of irradiance and wind speed time series from
a meteorological station, and electrical power time series from a set of 70 inverters. Distances
between inverters range from 220 meters to 2.8 kilometers. We analyze the correlation between
the fluctuations of the electrical power from each inverter at different time scales and distances,
and the connection between the daily level of global irradiance fluctuations and the correlation
between the electrical power from the inverters across different time scales and distances.

It must be highlighted the importance of the use of real electrical power time series from a
large collection of photovoltaic inverters of a same plant. To overcome the absence of such data,
previous research have proposed simplified models with several assumptions:

• A PV plant is modelled as a virtual network composed of identical one-dimensional PV
installations [4]. Therefore, electrical mismatch and shadow effects in the PV generator,
and performance differences between inverters are not considered, although these effects
alter the correlation between power fluctuation time series.

• The electrical power from virtual networks is approximated as the product of the plane-
of-array irradiance at one of the systems of the network and a constant factor. The model
is further simplified with the use of global horizontal irradiance instead of the irradiance
incident on the plane of the system [4, 9]. It must be noted that, at least on a daily basis,
the variability of the effective irradiation incident on tracking planes has been reported to
be higher than the variability of irradiation on the horizontal plane [10, 11].

• Clouds do not change but travel at constant one-dimensional speed. Cloud speeds are
estimated from satellite image analysis with an operational frequency of one per hour.
High frequency estimations are obtained via linear interpolation [5, 12].

The use of real electrical time series circumvents the need for these simplifications that gen-
erate uncertainty and imposes a limit on the confidence in the output of these models.

Other important contributions of this paper are the examination of the relation between the
daily irradiance fluctuation level and several meteorological features, and the unsupervised
classification (or clustering) of a collection of days in three different categories according to the
fluctuation level. Instead of using a parametrical approach, the features structure is not spec-
ified a priori but is instead mostly determined from data. This paper proposes a collection of
features to describe the data relying on very few assumptions. With the results of the clustering,
the correlation at different time scales and distances is examined in relation with the clustering
results.

Finally, it must be noted that the methods have been implemented using free software.
Source code is available as supplementary material (section 3.1).
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This paper is organized as follows. In section 2 the PV plant and the data acquisition system
is detailed. The mathematical formulation and discussion of the proposed methods is provided
in the section 3: the wavelet transform is summarized in the section 3.2, the feature analysis
and the clustering procedure are described in the section 3.4, and the wavelet correlation is
the subject of the section 3.3. The results of these methods are analyzed in section 4 and main
conclusions of this research are provided in section 5.

2. PV plant

The experimental data analysed in this paper belongs to a large PV plant situated at Amar-
aleja (Portugal) and owned by Acciona Energía. The plant is spread over 250 Ha and incorpo-
rates 2,520 solar trackers, ranging from 17.7 to 18.2 kWp, summing up a total generator power
of 45.6 MWp (38.5 MW MV/HV transformer power). The corresponding ground cover ratio,
GCR2, of the plant is 0.162 (its inverse, the ground requirement ratio, GRR, is 6.17). Each tracker
is tilted 45◦ from the floor and is mounted on a vertical-axis tracker (azimuth) paralleling the
sun east–west motion. The plant is divided in 70 generators. Each generator consists of 36
trackers feeding a 550 kW DC/AC inverter. The distances between them range from 220 meters
to 2.8 kilometers. Each inverter has its own 20 kV transformer and the whole PV plant feed
power to the 66 kV grid by a 44 MVA transformer. This PV system was started up in December
2008 and the annual estimated production is over 93 GWh.

The PV plant has been equipped with an intensively monitoring system, which has pro-
vided us the experimental data base. Every 5 seconds the power generated by each inverter is
synchronously recorded. Simultaneously, meteorological data is also recorded by the PV plant
weather station, which provides a measurement of global irradiance and wind speed among
others. Data recording started in May 2010 and is still undergoing.

3. Methods

The time-dependent correlation between the electrical power time series of the inverters in
different wavelet scales is calculated for each day of the data set (figure 1):

1. The wavelet coefficients of each of the 70 time series for the scales 1 to 9 are calculated
(section 3.2.1).

2. The scale-dependent correlations between the power time series of each of the possible
combinations between the 70 inverters of the plant is estimated with the wavelet correla-
tion (section 3.3). This results in a set of nine wavelet correlation matrices with 70 rows
and columns for each day of the data set.

In order to relate the wavelet correlation with the fluctuation level, the data set is partitioned
in three different groups according to the daily fluctuation behaviour of the global irradiance
with the meteorological measurements registered by the PV plant weather station (section 3.4,
figure 2). Each day is characterized with a set of features:

1. The global irradiation on the horizontal plane and the clearness index.
2. The wavelet variance for different scales (section 3.2.2).
3. The mean, minimum and maximum wind speed.

After a feature selection procedure (section 3.4.2), and with a matrix of transformed values
(section 3.4.3), the PAM algorithm (section 3.4.1) divides the set of daily values in three different
clusters of low, medium and high fluctuation levels (section 3.4.4).

2GCR is defined as the ratio between PV array area to total ground area.
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PX
AC,i i = 1, . . . , N PY

AC,i i = 1, . . . , N

MODWT MODWT

W̃X
j j = 1, . . . , 9 Correlation W̃Y

j j = 1, . . . , 9

ρXY (λj) j = 1, . . . , 9

Figure 1: Wavelet correlation algorithm. PX
AC,i and PY

AC,i are the i-th elements of the electrical
power time series from inverters X and Y, respectively. W̃X

j and W̃Y
j are the correspondent

wavelets coefficients of scale λj, and ρXY(λj) is the wavelet correlation of the inverters X and Y
at wavelet scale λj.

3.1. Software
The methods described below have been implemented using the free software environment

R [27] and several contributed packages, namely: zoo [28] for the time series, wmtsa [29] for
the wavelet analysis, solaR [30] for the clearness index, sp [31], lattice and latticeExtra

[32, 33] for displaying the results, cluster [34] for the clustering analysis and car [35] for the
Box-Cox functions. Throughout this section several footnotes are included to provide more
information about the connection between methods and code. The source code is available at
https://github.com/oscarperpinan/wavCorPV.

3.2. Wavelet analysis
The analysis of solar irradiance and electrical power time series with the wavelet transform

can be found in a variety of research papers [8, 9, 13]. The wavelet transform is a filtering
procedure which carries out a multiresolution analysis (MRA) of a time series, where each of the
decompositions of the analysis is a representation of the original signal with a different temporal
scale. This non-parametric analysis overcomes the restrictions imposed when using classical
time series analysis: for example, AR, MA, ARMA models and spectral analysis, are based on
the premises of stationarity and short memory process, conditions which are not fulfilled by
solar irradiance time series [8]. Besides, this tool improves the examination of fluctuations in a
time series: for example, it is common to find reports with fluctuations calculated as a simple
substraction between two samples, with time intervals chosen arbitrarily, without relation with
data.

Here we use the wavelet variance as a measure of fluctuation of solar irradiance in differ-
ent scales (section 3.4), and the MODWT of the power time series of each inverter to estimate
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Figure 2: Feature generation and clustering algorithm. The blue frame enclose the set of calcu-
lations performed on a daily basis. The result of this frame fills a row in the matrix constructed
with the global dataset. The dashed line and gray color of the average wind speed denote its
poor contribution to the PAM clustering results.
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the pairwise correlation between inverters at different scales for each day of the data set (sec-
tion 3.3).

We include here only a summary of the main steps of the wavelet analysis (figure 1). The
interested reader is referred to the book [14].

3.2.1. Multiresolution analysis
Let X be an N dimensional vector containing the real-valued time series Xt : t = 0, . . . , N − 1,

where the sample size N is any positive integer. For any positive integer J0, the level J0 of the
Maximum Overlap Discrete Wavelet Transform (MODWT)3 of X is a transform, W̃j = W̃jX,
which produces a set of J0 + 1 N-dimensional vectors, W̃1 . . . W̃J0 and ṼJ0 [14]. W̃j is the vec-
tor of MODWT wavelet coefficients related with changes on scale λj ≡ 2j−1, and ṼJ0 is the
vector of MODWT scaling coefficients associated with averages on scale 2J0 . The number of
decomposition levels, J0, is limited by the length of the signal through N = 2J0 .

The elements of W̃j and ṼJ0 are the output of a linear filtering operation implemented
with MODWT wavelet and scaling filters. W̃j and Ṽj are the mathematical representation of
these filters, named the MODWT wavelet and scaling matrices, respectively. Among the va-
riety of available filters the calculations reported in this paper have been performed with the
Daubechies least asymmetric (symmlet)4 filters with filter length L = 8 [14].

The time series X can be recovered from the MODWT with a multiresolution analysis (MRA)5:

X = W̃TW̃ =
J0

∑
j=1
W̃T

j W̃j + ṼT
J0

ṼJ0 ≡
J0

∑
j=1
D̃j + S̃J0 (1)

where D̃j = W̃T
j W̃j is the j-th level detail and S̃J0 = ṼT

J0
ṼJ0 is the J0-th level smooth.

3.2.2. Wavelet variance
The time-dependent wavelet variance for scale λj is defined as the variance of the wavelet

coefficients at level j6:

ν2
X,j =

1
N

N−1

∑
t=0

W̃2
j,t =

1
N
|W̃j|2 (2)

The energy decomposition of the MODWT can be combined with this definition to show
that the wavelet variance decomposes the variance of certain stochastic processes on a scale
basis. The energy decomposition of X is:

|X|2 = |W̃|2 =
J0

∑
j=1
|W̃j|2 + |ṼJ0 |2 (3)

Since the variance of the time series Xt is σ2
X = 1

N |X|2 − X2, and 1
N |ṼJ0 |2 ' X2, equations

(2) and (3) yield:

3The function wavMODWT of the package wmtsa performs the MODWT of a time series.
4The function wavDaubechies of the package wmtsa computes this filter using wavelet = 's8'.
5The function wavMRD of the package wmtsa calculates the detail from a MODWT and the function reconstruct can

invert the wavelet transform to the original series.
6For ease of exposition, the equation includes the whole set of coefficients. However, it is recommended the use of

the unbiased wavelet variance. This estimator avoids those coefficients subject to circular filter operations (boundary
coefficients)
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Wavelet scale λ1 λ2 λ3 λ4 λ5

Time scale 10 to 20 s 20 to 40 s 40 to 80 s 1.33 to 2.67 min 2.67 to 5.33 min

Wavelet scale λ6 λ7 λ8 λ9 λ10

Time scale 5.33 to 10.67 min 10.67 to 21.33 min 21.33 to 42.67 min 42.67 to 85.33 min 1.42 to 2.84 h

Table 1: Physical time scales corresponding to each wavelet scale.

σ2
X =

1
N

J0

∑
j=1
|W̃j|2 (4)

Therefore, the wavelet variance decomposes the variance of the time series X7:

σ2
X =

J0

∑
j=1

ν2
X,j (5)

Because the wavelet variance ν2
X(λj) is just the variance of the MODWT wavelet coefficients

at scale λj, the relationship between wavelet scale and frequency leads to an alternative sum-
mary of the spectral density function (SDF) [14, 16]:

ν2
X,j =

SX,j

2j∆t
(6)

Equation (6) shows that the SDF is summarized with the wavelet variance using the average
value per octave frequency band:

SX,j = 2j+1∆t
∫ 1

2j∆t
1

2j+1∆t

SX( f )df (7)

The width of the octave of the correspondent scale λj is 1/(2j+1∆t), where ∆t is the sampling
time of the signal. The frequency band of this scale is 1/(2j+1∆t) ≤ f ≤ 1/(2j∆t) (Table 1).

3.3. Cross-correlation of wavelet time series
The ability of the MODWT to capture variability in both time and scale can be extended to

show the bivariate relationship between two time series both locally in time and frequency.
The wavelet cross-covariance of two stochastic processes Xt and Yt for scale λj = 2j−1 and

lag τ is defined as [24]:

γτ,XY(λj) ≡ Cov{WX
j,t, WY

j,t+τ} (8)

where WX
j,t and WY

j,t are the λj MODWT coefficients of each process. These coefficients have
mean zero for adequate wavelet filters, and therefore:

γτ,XY(λj) = E{WX
j,t, WY

j,t+τ} (9)

7The function wavVar of the package wmtsa estimates the wavelet variances from a time series.
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Figure 3: Correlogram matrix with the three typical days and the wavelet scales.

Similarly the wavelet cross-correlation for scale λj and lag τ can be defined with the wavelet
cross-covariance and the wavelet variances for both processes8:

ρτ,XY(λj) ≡
γτ,XY(λj)

νX(λj)νY(λj)
(10)

Since this is just a correlation between two random variables, −1 ≤ ρτ,XY(λj) ≤ 1 for all
scales and lags. When the lag is zero (τ = 0) we obtain the wavelet covariance and correlation,
which will be denoted as γXY(λj) and ρXY(λj) respectively to simplify notation.

Here we use the wavelet correlation to analyse the scale-dependent correlations for the
scales 1 to 9 between the power time series of each of the possible combinations between the 70
inverters of the plant. This results in a set of nine wavelet correlation matrices with 70 rows and
columns for each day of the data set.

The figure 3 displays three correlograms for three typical days (explained in section 3.4.4
and displayed in figure 9) to explore the inner structure of the field of inverters. The figure
4 plots the correlation against the distances between inverters to analyse the behaviour of the
wavelet correlation with distance for each scale.

3.3.1. Uncertainty associated with estimators and experimental data
Two important facts must be highlighted both directly related to using experimental data

instead of simulations:

• Since the data is a partial realization of the stochastic process, there is a confidence inter-
val associated with the MODWT estimators of the wavelet correlation [24]. The figure 5
displays this confidence interval for each scale and correlation value. It is wider for last
wavelet scales and for low correlation values. Fortunately, our results show high correla-
tion values for these scales (figure 3) and, therefore, the confidence intervals are narrow
enough. Anyway, the confidence interval limits the comparison between points and must
be considered throughout the analysis.

• Electrical power time series include the statistical differences between the performance of
the inverters and PV generators. These differences are independent from the variability

8The function cor of the stats package produces for each wavelet scale a matrix of correlations between the corre-
spondent wavelet coefficients calculated with the function wavMODWT of the wmtsa package.
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Figure 4: Wavelet correlation versus the distance between inverters. The lines correspond to the
exponential decay model as defined in equation (14) and table 2.

of the irradiance and, although do not represent the key role of the relation between time
series, they may reduce the correlation between time series.

3.4. Clustering
In order to relate the wavelet correlation with the fluctuation level, the data set is partitioned

in three different groups according to the daily fluctuation behaviour of the global irradiance
with the meteorological measurements registered by the PV plant weather station. This section
details a clustering algorithm and a variable selection procedure to divide the matrix of daily in
three different clusters of low, medium and high fluctuation levels (figure 2).

3.4.1. Partitioning Around Medoids
The unsupervised classification or clustering of data is the task of assigning a set of objects

into groups (called clusters) so that the objects in the same cluster are more similar to each other
than to those in other clusters of the data. There is a wide variety of clustering techniques [17].
Due to its simplicity and robustness we have chosen the Partitioning Around Medoids (PAM)
algorithm, which searches for k representative objects, called medoids, among the objects of the
data set [18]. These medoids are computed such that the total dissimilarity of all objects to their
nearest medoid is minimal. Therefore, the goal is to find a subset of k objects m1, . . . , mk which
minimizes the objective function:

n

∑
i=1

min
t=1,...,k

d(i, mt) (11)

where d is a dissimilarity measure. The results reported in this paper are calculated with the
euclidean distance.

After choosing the medoids, an object i is assigned into cluster t when the medoid mt is
nearer to i than the rest of medoids9:

9The pam function of the package cluster implements the PAM method.
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Figure 5: Confidence intervals associated with the MODWT estimator of the wavelet correla-
tion.

d(i, mt) ≤ d(i, mj) for j = 1, . . . , k. (12)

3.4.2. Variables selection
Before clustering, the data must be represented with a set of features (pattern representa-

tion). The goal of this feature generation is to discover compact and informative representations
of the data. Since our subsequent interest is to break the collection into useful groups, the fea-
tures should lead to large between-class distance and small within-class variance in the feature
vector space. This means that features should take distant values in the different classes and
closely located values in the same class [19].

In a clustering context with no class labels for patterns, the feature selection method involves
a trial-and-error process where various subsets of features are selected, the resulting patterns
clustered, and the output evaluated using a validity index [17].

In a previous paper Perpiñán and Lorenzo showed the behaviour of the solar irradiance as a
long memory process and suggested the use of the exponent of the wavelet variance as a useful
indicator of the fluctuation level [8]. In fact, this approach is one of the methods to estimate the
fractal index of a time series, which is a measure of roughness (or smoothness) [20]. The fractal
dimension (directly related to the fractal index) and the clearness index were proposed in [21]
to classify solar irradiance in three different classes.

Although the fractal index (dimension) is a useful indicator of the fluctuation level as a
summary of the information contained in the wavelet variances, its associated uncertainty [20]
discourages its use in a clustering context. Thus, instead of using a derived variable (fractal
dimension) we have decided to work with the primary variables (wavelet variances).
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Silhouette width si
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(a) With mean and maximum daily wind speed.
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(b) Without mean and maximum daily wind speed.

Figure 6: Silhouette plots of the clustering results with (6a) and without (6b) wind speed values.
In these graphics, “Low”, “High” and “Medium” clusters (section 3.4.4) correspond to j = 1,
j = 2 and j = 3, respectively.

For the clustering of daily data we have tested a set of features composed of the daily global
irradiation, the clearness index10, the wavelet variances and the mean and maximum daily wind
speed. These features are tested with the PAM method and the results validated with the silhou-
ette plot [22], a graphical display of the average dissimilarity between objects and medoids11,
whose average width is a suitable quality index to validate the clustering performance [18]. The
tests results indicate that the wind speeds contribute negatively to the performance of the clus-
tering procedure. Besides, the inclusion of the global irradiation distorts the clustering results
if the feature matrix is not previously scaled.

Figure 6 compares the silhouette plots of the clustering results with and without mean and
maximum daily wind speed (global irradiation is excluded from both plots). The average sil-
houette width with wind speeds is 0.37 and increases to 0.48 if these features are not included
in the matrix. It is interesting to note that in both graphics clusters 1 and 2 have better silhouette
widths than cluster 3. As it will be shown in section 3.4.4, clusters 1 and 2 contains days with
low and high levels of power fluctuation, respectively, and cluster 3 contains days with medium
levels of fluctuation.

It is important to stress that, although the relation between wind speed and irradiance fluc-
tuation has been previously suggested [8, 13], our experimental analysis does not provide evi-
dences to support this relation. Instead, other authors connect the irradiance changes with the
cloud transit speed [4] which cannot be directly measured but estimated with the cloud motion
analysis from satellite images.

10The fSolD function of the solaR package calculates the daily extraterrestial irradiation.
11The silhouette function of the cluster package calculates the silhouette of a PAM clustering.
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Consequently, the final set of features only comprises the clearness index and the wavelet
variances.

3.4.3. Box-Cox transformation
This set of features provides a matrix of values whose distributions functions are strongly

positively skewed. Before using this matrix with the clustering algorithm a transformation is
recommended [19]. The family of the Box-Cox power functions [23] create a rank-preserving
transformation and are recognised as a useful data pre-processing technique used to stabilise
variance and make the data more normal distribution-like.

Let x be the original feature and xε the transformed feature. Then:

xε =

{
xε−1

ε if ε 6= 0
log(x) if ε = 0

(13)

where ε is calculated for each feature with the Box-Cox method12 [23].

3.4.4. Clustering results
The result of the PAM clustering method applied to the transformed matrix of features is

displayed in the figures 7 and 8.
The figure 7 shows a scatter plot matrix where all the variables are confronted together

(including the global irradiation and wind speeds) with their kernel density estimations in the
diagonal frames. Different colors are asignated to each cluster, labelled as “High”, “Medium”
and “Low” according to their fluctuation levels as represented by the wavelet variances. The
linear relation between the wavelet variances is easily appreciable. The clearness index and
the wavelet variances are connected with a non-linear relation. The days with low fluctuations
levels have very high (clear days) or very low (overcast days) values of clearness index, while
days with middle and high fluctuation levels can be found in the middle range of the clearness
index. Finally, the wind speed values do not show a precise relation neither with the clearness
index nor with the wavelet variances.

The figure 8 displays the kernel density estimates of the wavelet variances grouped by clus-
ters (the same colours of the figure 7 are being used here). It is evident that each cluster is clearly
separated for these variables.

This procedure has been applied to the whole data set. For ease of exposition, the results will
be illustrated in section 4 using only three days extracted from each cluster (figure 9). It must
be underlined that there are nonnegligible differences among the collection of days belonging
to a same cluster (figure 6b and section 3.3.1). However, although the results exposed with
these three days is not exactly repeated by the rest of days of the corresponding cluster, we
have found that the wavelet correlation follows a common pattern for the days of a cluster. This
common structure will be highlighted further and, therefore, the analysis and conclusions to be
detailed are valid for almost every day of each cluster.

The figure 10 displays the maximum irradiance fluctuation at each wavelet scale for these
three days. The maximum irradiance fluctuation for the scale λj is estimated with the maxi-
mum value of the j-th level wavelet coefficients vector, W̃j, normalized with the STC irradiance,
GSTC = 1000 W

m2 .

12The functions powerTransform and bcPower of the package car implement the Box-Cox family functions.
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Figure 7: Scatterplot matrix of features tested with the quality index of the PAM algorithm.
Colors indicate the cluster membership as determined by the PAM method.
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Figure 8: Kernel density estimates of the wavelet variances grouped by clusters. The x-scales
displays the wavelet variances after the Box-Cox transformations.
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Figure 9: Typical days from each cluster labelled according to the fluctuation level.
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Figure 10: Maximum irradiance fluctuation at each wavelet scale for the three fluctuation levels.
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4. Discussion

The correlograms of the figure 3 show low correlation values for the two lowest wavelet
scales for the three classes. This behaviour does not change for the wavelet scales λ3 and λ4

13

with data from the class “High”. However, the correlation matrices of these wavelet scales in
classes “Low” and “Medium” show an increasing pattern: several pairs of inverters are fluctu-
ating in synchronism (positive values) or in opposition (negative values). In the “Low” cluster
the positive values of correlation are predominant, while in the “Medium” cluster the correla-
tion values range from +1 to −0.5. The wavelet scales λ5 and λ6 in class “Low” are dominated
by high positive values. The class “Medium” at these scales still shows patterns of high posi-
tive and high negative values, although the scale λ6 is almost diluted with positive values. The
class “High” at these scales starts to show a weak pattern with positive values which is increas-
ingly defined at scales λ7, λ8 and λ9. These wavelet scales of classes “Low” and “Medium” are
defined almost completely with values next to 1.

The figure 4 displays the same behaviour confronting the correlation with the distance be-
tween inverters. Low correlation values for the whole range of distances is evident for the
scale λ1 for the three classes. The wavelet scales λ3 and λ4 of the class “High” still show low
correlation values independently of the distance. The correlation at these wavelet scales in
classes “Low” and “Medium” are high for short distances decaying rapidly with distance. In
the “Medium” cluster the correlation is positive for short distances and changes to negative
values with increasing distances. This behaviour is particularly visible at λ5 and λ6 scales. On
the other hand, in the “Low” cluster the correlation is almost always positive. Particularly, the
wavelet scales λ6 to λ9 in this class are dominated by increasingly high positive values. The
class “Medium” at the scales λ7 to λ9 also shows a flatter behaviour with the distance although
with a higher dispersion. The class “High” is dominated by low correlation values and a flat
relation with the distance through scales λ1 to λ4. At scale λ5 the correlation gets higher at short
distances with a fast decaying response. The scales λ6 and λ7 reinforce this behaviour resulting
in a quasi-linear relation at scales λ8 and λ9 with correlation values next to 1 for short distances
reaching 0 at the largest distances.

In summary:

• The correlation values at the scales λ1 and λ2 (corresponding to the time periods 10 to
20 s and 20 to 40 s respectively) are low without dependence on the fluctuation level of the
day.

• The correlation at the scales λ8 and λ9 (corresponding to the time periods 21.33 to 42.67 min
and 42.67 to 85.33 min respectively) are positive and high values. With low fluctuation
levels the correlation is close to one for the whole range of distances and for every combi-
nation of inverters. When the fluctuation level is medium the correlation ranges from 0.5
to 1 slowly decaying with the distance. With high fluctuation levels the correlation values
extend from 0 to 1 decreasing strongly with distance.

• The correlation behaviour at the intermediate scales depends on the fluctuation level. For
example, the scales λ3 and λ4 (40 to 80 s and 1.33 to 2.67 min with low fluctuation levels are
similar to the scales λ5 and λ6 (2.67 to 5.33 min and 5.33 to 10.67 min) with high fluctuation
levels.

13The table 1 relates the wavelet scale with the physical time scale.
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4.1. Relation with previous research
This tendency is consistent with recent investigations. In particular, the references [8, 25]

propose to model a PV plant as a low-pass filter: high frequencies (scales λ1 and λ2) are strongly
attenuated because the correlation values are very low; low frequencies remain approximately
unchanged since the correlation values are close to 1; intermediate frequencies filtering depends
on the distance and on the fluctuation level of the day.

Moreover, these results show agreement with the “wavestrapping” method [26] proposed
in [8]. This method produces new versions of an original irradiance signal with the same fluctu-
ation behaviour. The diurnal trend of the original time series is unchanged while the detrended
irradiance is wavestrapped. The wavelet coefficients of the detrended irradiance (the sum of the
first wavelet scales) are assumed to be from an independent and identically distributed popu-
lation so new time series can be constructed with random sampling with replacement from
the original decomposition. This approach is consistent with the low levels of cross-correlation
between different points of the plant at the first wavelet scales.

On the other hand, Hoff and Perez [4] developed a model to quantify the output variability
from an ensemble of identical PV systems. Under this model, when the change in output be-
tween locations is uncorrelated for the considered time scale, the fleet output variability equals
the output variability at any one location divided by the square root of the number of locations.
This relationship is the result of the sum of uncorrelated random variables with identical vari-
ance, and is consistent with our results at the λ1 and λ2 scales. For other cases, the variability
predicted by this model depends on the distance and time scale considered, as confirmed with
our experimental data.

4.2. Exponential decay model
The behaviour displayed in figure 4 can be modelled with a exponential decay model:

ρ(d) = a + b · exp(−d
c
) (14)

where d is the distance in meters between inverters, a is the asymptotic value for large distances,
a + b is the correlation value for short distances, and c is the range factor. For example, the
estimated correlation at wavelet scale λ5 between two inverters separated 300 m is −0.015 +
5.5 · exp(−300/57) = 0.013 for the high fluctuation level. The reader is bewared that the use of
this model outside the distances range of the figure 4 can result in erroneous correlation values,
that is |ρ(d)| > 1.

The range factor is the distance in which the difference of the model from the asymptote
becomes shorter than 0.37 · b/a:

ρ(c)− ρ(∞)

ρ(∞)
' 0.37 · b

a
(15)

ρ(3c)− ρ(∞)

ρ(∞)
' 0.05 · b

a
(16)

Since this difference depends on the ratio between a and b, the range factors from two models
with different coefficients a and b must be compared cautiously.

The table 2 contains the coefficients of this model for each of the combinations between
wavelet scale and fluctuation level of the figure 4. Those combinations of wavelet scale and
fluctuation level where the correlation is almost constant or linear with the distance can also
be adjusted with this model. However, the corresponding coefficients are meaningless (the
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Figure 11: Logarithm of the range coefficient of equation (14) versus the wavelet scale for each
fluctuation cluster.

absolute value of the asymptotic value of the correlation, |a|, is larger than 1, or the range factor,
c, is very large or negative) and not useful for comparisons.

These combinations (marked in italic in the table 2) are excluded from the figure 11, which
displays the logarithm of the range factor versus the wavelet scale for each fluctuation clus-
ter. Loosely speaking, the range factor is higher for the “Medium” and “Low” clusters than
for the “High” cluster, and it increases exponentially with the wavelet scale. In other words,
the distance in which the correlation is similar to the value at large distances is shorter if the
fluctuation level is high and for the first wavelet scales. Anyway, it must be underlined that the
main purpose of the equation (14) is to better illustrate the relation between wavelet correlation,
distance and wavelet scale and not to provide a model perfectly adjusted to the data. Therefore,
the meaning of the model and its coefficients must be understood in this context.

5. Conclusions

This paper analyzes the correlation between the fluctuations observed in the power gen-
erated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant, separated between
220 m to 2.8 km. The use of real electrical power time series from a large collection of photo-
voltaic inverters of a same plant is a major contribution in the context of models built upon
simplified assumptions to overcome the absence of such data. Nevertheless, it must be under-
lined that there is an uncertainty associated to the use of experimental data: on the one hand, the
confidence interval of the estimators of the wavelet correlation; on the other hand, the statistical
differences between the inverters performance and between PV generators.

This data set has been divided into three different groups with a clustering procedure ac-
cording to the daily fluctuation level of the global irradiance. The clustering procedure performs
correctly with the information provided by the clearness index and the wavelet variances for
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Fluctuation Level Wavelet scale a b a + b c

Low

λ1 -0.005 0.026 0.021 5.7e+02
λ2 0.031 0.032 0.063 40
λ3 -0.0051 1.1 1.127 1.8e+02
λ4 -0.058 1 0.973 4e+02
λ5 0.27 0.86 1.133 6.1e+02
λ6 0.57 0.48 1.049 1.3e+03
λ7 -0.68 1.7 1.019 1.6e+04
λ8 3.4e+04 -3.4e+04 1.008 -9.5e+08
λ9 7.6e+03 -7.6e+03 1.005 -4.8e+08

Medium

λ1 -8.3e+04 8.3e+04 0.009 1.8e+10
λ2 -0.012 2.8 2.770 73
λ3 -0.064 2.2 2.152 1.7e+02
λ4 -0.4 1.9 1.461 6.6e+02
λ5 -1e+06 1e+06 1.126 1.5e+09
λ6 1.3e+06 -1.3e+06 1.007 -3.6e+09
λ7 -5.3e+05 5.3e+05 0.843 3.9e+09
λ8 -8.5e+02 8.6e+02 0.814 1e+07
λ9 -7.3e+13 7.3e+13 0.938 1.2e+20

High

λ1 -4.9e+04 4.9e+04 -0.005 3.3e+10
λ2 -1.6 1.6 -0.022 4.8e+05
λ3 -1.4 1.4 -0.023 2.7e+05
λ4 -0.015 5.5 5.486 57
λ5 -0.02 2.5 2.448 1.3e+02
λ6 -0.027 1.4 1.415 3.2e+02
λ7 0.056 1.1 1.192 6.4e+02
λ8 -0.16 1.2 1.074 2e+03
λ9 -7.3e+05 7.3e+05 1.081 2.7e+09

Table 2: Coefficients of the exponential decay model expressed in equation (14) adjusted with
the data displayed in figure 4. There are some combinations whose coefficients are meaningless
(the absolute value of the asymptotic value of the correlation, |a|, is larger than 1, or c is very
large or negative) and are marked in italic.
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different time scales. Neither the global irradiation nor the wind speed contributes to improve
the performance of the classification method.

Afterwards, the time dependent correlation between the electrical power time series of the
inverters has been calculated using the wavelet transform. The results show that the wavelet
correlation depends on the distance between the inverters, the wavelet time scales and the daily
fluctuation level. Correlation values for time scales below one minute are low without depen-
dence on the daily fluctuation level. However, for time scales above 20 minutes, positive high
correlation values are obtained, and the decay rate with the distance depends on the daily fluc-
tuation level. At intermediate time scales the correlation depends strongly on the daily fluctu-
ation level: for example, 2 min fluctuations from a group of inverters may be uncorrelated if
the day belongs to the “High” cluster, but show almost perfect correlation if the day falls in the
“Medium” group.

These findings are consistent with recent investigations which model a PV plant as a low-
pass filter: high frequencies (scales λ1 and λ2) are strongly attenuated because the correlation
values are very low; low frequencies remain approximately unchanged since the correlation
values are close to 1; intermediate frequencies filtering depends on the distance and on the
daily fluctuation level.

The methods proposed in this paper have been implemented using the free software envi-
ronment R [27]. The source code is available at https://github.com/oscarperpinan/wavCorPV.
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