187 research outputs found

    Nitrous oxide and methane in the Atlantic Ocean between 50 degrees North and 52 degrees South: Latitudinal distribution and sea-to-air flux

    Get PDF
    We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper 300 m of the water column along two 13,500 km transects between 50°N and 52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between 23.5°N and 23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3-, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to 42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr-1 and 0.81–1.43 Tg CH4 yr-1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for 6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought

    Seasonal phosphorus and carbon dynamics in a temperate shelf sea (Celtic Sea)

    Get PDF
    The seasonal cycle of resource availability in shelf seas has a strong selective pressure on phytoplankton diversity and the biogeochemical cycling of key elements, such as carbon (C) and phosphorus (P). Shifts in carbon consumption relative to P availability, via changes in cellular stoichiometry for example, can lead to an apparent ‘excess’ of carbon production. We made measurements of inorganic P (Pi) uptake, in parallel to C-fixation, by plankton communities in the Celtic Sea (NW European Shelf) in spring (April 2015), summer (July 2015) and autumn (November 2014). Short-term (<8 h) Pi-uptake coupled with dissolved organic phosphorus (DOP) release, in parallel to net (24 h) primary production (NPP), were all measured across an irradiance gradient designed to typify vertically and seasonally varying light conditions. Rates of Pi-uptake were highest during spring and lowest in the low light conditions of autumn, although biomass-normalised Pi-uptake was highest in the summer. The release of DOP was highest in November and declined to low levels in July, indicative of efficient utilization and recycling of the low levels of Pi available. Examination of daily turnover times of the different particulate pools, including estimates of phytoplankton and bacterial carbon, indicated a differing seasonal influence of autotrophs and heterotrophs in P-dynamics, with summer conditions associated with a strong bacterial influence and the early spring period with fast growing phytoplankton. These seasonal changes in autotrophic and heterotrophic influence, coupled with changes in resource availability (Pi, light) resulted in seasonal changes in the stoichiometry of NPP to daily Pi-uptake (C:P ratio); from relatively C-rich uptake in November and late April, to P-rich uptake in early April and July. Overall, these results highlight the seasonally varying influence of both autotrophic and heterotrophic components of shelf sea ecosystems on the relative uptake of C and P

    Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium

    Get PDF
    Trichodesmium is a globally important marine microbe that provides fixed nitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixation is likely regulated by iron or phosphate availability, but the extent and interaction of these controls are unclear. From metaproteomics analyses using established protein biomarkers for nutrient stress, we found that iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in the North Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was more abundant under co-stress as opposed to single nutrient stress. This is consistent with the idea that Trichodesmium has a specific physiological state during nutrient co-stress. Organic nitrogen uptake was observed and occurred simultaneously with nitrogen fixation. The quantification of the phosphate ABC transporter PstA combined with a cellular model of nutrient uptake suggested that Trichodesmium is generally confronted by the biophysical limits of membrane space and diffusion rates for iron and phosphate acquisition in the field. Colony formation may benefit nutrient acquisition from particulate and organic sources, alleviating these pressures. The results highlight that to predict the behavior of Trichodesmium, both Fe and P stress must be evaluated simultaneously

    Continued glacial retreat linked to changing macronutrient supply along the West Antarctic Peninsula

    Get PDF
    At the West Antarctic Peninsula (WAP), continued atmospheric and oceanic warming is causing significant physical and biogeochemical changes to glaciers and the marine environment. We compare sediment sources and drivers of macronutrient distributions at two bays along the WAP during austral summer 2020, using radioactive radium and stable oxygen isotopes to trace sedimentary influences and quantify different freshwater inputs. In the Ryder Bay, where the Sheldon Glacier is marine-terminating, radium activities at the sediment-water interface indicate considerable benthic mixing. Using radium isotope activity gradients to resolve radium and macronutrient fluxes, we find buoyant meltwater proximal to the glacier drives vigorous mixing of sediment and entrainment of macronutrient deep waters, on the order of 2.0 × 105 mol d−1 for nitrate. Conversely, in the Marian Cove, where the Fourcade Glacier terminates on land, low salinities and oxygen isotopes indicate a meltwater-rich surface layer <1 m thick and rich in sediment, and strong vertical mixing to the seafloor. A continued shift to land-terminating glaciers along the WAP may have a significant impact upon nutrient and sediment supply to the euphotic zone, with impacts upon primary productivity and carbon uptake efficiency. The future of primary production, carbon uptake, and food web dynamics is therefore linked to glacier retreat dynamics in the many fjords along the WAP

    Assessing phytoplankton community composition in the Atlantic Ocean from in situ and satellite observations

    Get PDF
    The Atlantic Meridional Transect (AMT) program (www.amt-uk.org) provides the perfect opportunity to observe the phytoplankton community size structure over a long latitudinal transect 50oN to 50oS, thereby covering the most important latitude-related basin-scale environmental gradients of the Atlantic Ocean. This work presents cell abundance data of phytoplankton taxa recently collected during cruises AMT28 and 29 (in 2018 and 2019, respectively) using flow cytometer and microscope observations, as well as the pigment composition of the community, to assess the abundance and spatial distribution of taxonomic groups across the Atlantic. The community size structure showed a clear consistency between cruises at large spatial scale, with a dominance of picoplanktonic Cyanobacteria in oceanic gyres, an increase in all groups in the equatorial upwelling region, and high biomass of microplankton size class at higher latitudes. Phytoplankton carbon biomass for oceanographic provinces, ranged from median values of 10 to 47 mg Carbon m-3, for the oligotrophic gyres, and South Atlantic (45°S-50oS), respectively. Satellite images of total chlorophyll a (as a proxy for phytoplankton biomass) as well as the relative contribution of the three phytoplankton size classes were produced for both cruises, and despite the small number of matchups, statistically agreed well with in situ size classes estimated as carbon biomass, constituting the first attempt in the literature to match satellite size classes with in situ data derived from cell abundance. The comparison of community structure between recent cruises (2019, 2018, 2015) and earlier ones (1995-1998) indicates a decrease in the number of diatom-bloom forming species, and an increase in Dinoflagellates, whereas nitrogen-fixing Trichodesmium abundance in tropical Atlantic remains constant. Within the recent period, a relative increase in the median values of picoplankton fraction was seen in SATL region, counterbalanced by a decrease in both nano- and microplankton fractions. Additionally, this study includes a database of species identified by microscopy, which had been interrupted for 20 years, providing a basis for long-term series of phytoplankton species

    Abundance of a chlorophyll a precursor and the oxidation product hydroxychlorophyll a during seasonal phytoplankton community progression in the Western English Channel

    Get PDF
    This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, www.westernchannelobservatory.org) over an annual cycle (2012). Weekly measurements of phytoplankton species composition and abundance enabled detailed analysis of possible sources of hydroxychlorophyll a. Dinoflagellates, 2 diatom species, the prymnesiophyte Phaeocystis spp. and the coccolithophorid Emiliania huxleyi were all associated with hydroxychlorophyll a occurrence. However, during alternate peaks in abundance of the diatoms, no association with hydroxychlorophyll a occurred, indicating that the oxidation of chlorophyll a was dependant not only on species but also on additional factors such as the mode of mortality, growth limiting factor (i.e. nutrient concentration) or phenotypic plasticity. Surface sediment samples contained 10 times more hydroxychlorophyll a (relative to chlorophyll a) than pelagic particulate samples, indicating that more chlorophyll a oxidation occurred during sedimentation or at the sediment-water interface, than in the pelagic environment. In addition, chlorophyll aP276 correlated with chl-a concentration, thus supporting its assignment as a chl-a precursor

    Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate continental shelf sea

    Get PDF
    Continental shelf seas may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through a ‘continental shelf pump’ mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in this temperate, seasonally stratified system. Following the onset of stratification, near-surface biological primary production during spring and summer removed dissolved inorganic carbon and nutrients, and a fraction of the sinking particulate organic matter was subsequently remineralised beneath the thermocline. Water column inventories of these variables throughout 1.5 seasonal cycles, corrected for air-sea CO2 exchange and sedimentary denitrification and anammox, isolated the combined effect of net community production (NCP) and remineralisation on the inorganic macronutrient inventories. Overall inorganic inventory changes suggested that a significant fraction (>50%) of the annual NCP of around 3 mol-C m–2 yr–1 appeared to be stored within a long-lived organic matter (OM) pool with a lifetime of several months or more. Moreover, transfers into and out of this pool appeared not to be in steady state over the one full seasonal cycle sampled. Accumulation of such a long-lived and potentially C-rich OM pool is suggested to be at least partially responsible for the estimated net air-to-sea CO2 flux of ∌1.3 mol-C m–2 yr–1 at our study site, while providing a mechanism through which a nutrient-conserving continental shelf pump for CO2 could potentially operate in this and other similar regions

    SeaWiFS Postlaunch Technical Report Series

    Get PDF
    This report documents the scientific activities on board the Royal Research Ship (RRS) James Clark Ross (JCR) during the fifth Atlantic Meridional Transect (AMT-5), 14 September to 17 October 1997. There are three objectives of the AMT Program. The first is to derive an improved understanding of the links between biogeochemical processes, biogenic gas exchange, air-sea interactions, and the effects on, and responses of, oceanic ecosystems to climate change. The second is to investigate the functional roles of biological particles and processes that influence ocean color in ecosystem dynamics. The Program relates directly to algorithm development and the validation of remotely-sensed observations of ocean color. Because the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument achieved operational status during the cruise (on 18 September), AMT-5 was designated the SeaWiFS Atlantic Characterization Experiment (SeaACE) and was the only major research cruise involved in the validation of SeaWiFS data during the first 100 days of operations. The third objective involved the near-real time reporting of in situ light and pigment observations to the SeaWiFS Project, so the performance of the satellite sensor could be determined

    Enhanced mercury reduction in the South Atlantic Ocean during carbon remineralization

    Get PDF
    Highlights ‱ Dissolved gaseous mercury can be calculated from modeled dissolved inorganic carbon. ‱ Modeled dissolved gaseous mercury agrees well with worldwide observations. ‱ Dissolved gaseous mercury is related to depth and macronutrients concentrations. Mercury (Hg) in seawater is subject to interconversions via (photo)chemical and (micro)biological processes that determine the extent of dissolved gaseous mercury (DGM) (re)emission and the production of monomethylmercury. We investigated Hg speciation in the South Atlantic Ocean on a GEOTRACES cruise along a 40°S section between December 2011 and January 2012 (354 samples collected at 24 stations from surface to 5250 m maximum depth). Using statistical analysis, concentrations of methylated mercury (MeHg, geometric mean 35.4 fmol L−1) were related to seawater temperature, salinity, and fluorescence. DGM concentrations (geometric mean 0.17 pmol L−1) were related to water column depth, concentrations of macronutrients and dissolved inorganic carbon (DIC). The first-ever observed linear correlation between DGM and DIC obtained from high-resolution data indicates possible DGM production by organic matter remineralization via biological or dark abiotic reactions. DGM concentrations projected from literature DIC data using the newly discovered DGM–DIC relationship agreed with published DGM observations
    • 

    corecore