587 research outputs found

    Prospectus, January 24, 1990

    Get PDF
    https://spark.parkland.edu/prospectus_1990/1001/thumbnail.jp

    Functional morphology of the forelimb of Early Miocene caviomorph rodents from Patagonia

    Get PDF
    Caviomorph rodents (New World Hystricognathi) are represented in the Santa Cruz Formation of Patagonia (Early Miocene, Santacrucian) by four superfamilies. From this unit, excellent cranial and associated postcranial remains of Neoreomys, Eocardia, Schistomys (Cavioidea), Perimys (Chinchilloidea) and Steiromys (Erethizontoidea) are known. To interpret their use of substrate, a comparative description of limb bones (scapula, humerus, radius and ulna) of the five genera was performed within a taxonomic and ecologically diverse sample of extant rodents. Using palaeobiological inferences based on the habits and functional morphology of members of the extant sample, hypotheses were generated for the use of substrate by the Santacrucian taxa. Neoreomys would have had a marked flexo-extension capacity of the humerus and a moderate flexion of the manus. This genus and Eocardia would have had a complete and stabilized forearm extension, with wide stride and moderate extension of the forearm for the latter. Schistomys presents features similar to Eocardia. Perimys would have had strong external rotation of the humerus, moderate flexion of the manus and moderate, complete and stabilized extension of the forearm. Steiromys would have had good pronation/supination capacity, strong internal rotation of the humerus and flexion of the forearm and manus. Neoreomys would have been ambulatory and an occasional runner. Eocardia and Schistomys would have been good runners. Perimys would have been a digger and Steiromys a climber. This morphological disparity reflects a high ecological diversity, compatible with differential use of space during the Santacrucian.Fil: Muñoz, Nahuel Antu. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Toledo, Néstor. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Candela, Adriana Magdalena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Vizcaíno, Sergio Fabián. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    How Can India Help Prevent Food Price Volatility?

    Get PDF
    This article is about India's role in reducing food price volatility in the world. India has come a long way from a ‘ship?to?mouth existence’ to a country that is ready to confer legal right to food to its citizens based on its own production. India has 18 per cent of the world's population and therefore food self?sufficiency of India would be a blessing for the struggle against price volatility. By improving productivity, by reducing energy use, by augmenting water resources and by conserving prime farm land, India can produce enough food for an estimated population of 1.5 billion by 2030. Further, by controlling speculative trade in food prices, by maintaining stable domestic prices and by sharing its agricultural and food policy expertise, India can help reduce food price volatility. However, to reduce global price volatility and to remove price distortions in the world market, it is important to resolve the issues of agricultural trade and to adopt a small farmer?friendly global trading system

    The Phonon Drag Effect in Single-Walled Carbon Nanotubes

    Full text link
    A variational solution of the coupled electron-phonon Boltzmann equations is used to calculate the phonon drag contribution to the thermopower in a 1-D system. A simple formula is derived for the temperature dependence of the phonon drag in metallic, single-walled carbon nanotubes. Scattering between different electronic bands yields nonzero values for the phonon drag as the Fermi level varies.Comment: 8 pages, 4 figure

    Diffusive Charge Transport in Graphene on SiO2

    Full text link
    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates [1]; increased dielectric screening reduces scattering from charged impurities, but increases scattering from short-range scatterers [2]. We evaluate the effects of the corrugations (ripples) of graphene on SiO2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering [3, 4]. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity linear in temperature and independent of carrier density [5]; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity [5]. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime.Comment: 28 pages, 7 figures, submitted to Graphene Week proceeding

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore