576 research outputs found
B-Methylated Amine-Boranes:Substituent Redistribution, Catalytic Dehydrogenation, and Facile Metal-Free Hydrogen Transfer Reactions
Although
the dehydrogenation chemistry of amine-boranes substituted at nitrogen
has attracted considerable attention, much less is known about the
reactivity of their B-substituted analogues. When the B-methylated
amine-borane adducts, RR′NH·BH<sub>2</sub>Me (<b>1a</b>: R = R′ = H; <b>1b</b>: R = Me, R′ = H; <b>1c</b>: R = R′ = Me; <b>1d</b>: R = R′ = <i>i</i>Pr), were heated to 70 °C in solution (THF or toluene),
redistribution reactions were observed involving the apparent scrambling
of the methyl and hydrogen substituents on boron to afford a mixture
of the species RR′NH·BH<sub>3–<i>x</i></sub>Me<sub><i>x</i></sub> (<i>x</i> = 0–3).
These reactions were postulated to arise via amine-borane dissociation
followed by the reversible formation of diborane intermediates and
adduct reformation. Dehydrocoupling of <b>1a</b>–<b>1d</b> with Rh(I), Ir(III), and Ni(0) precatalysts in THF at 20
°C resulted in an array of products, including aminoborane RR′NBHMe,
cyclic diborazane [RR′N–BHMe]<sub>2</sub>, and borazine
[RN–BMe]<sub>3</sub> based on analysis by in situ <sup>11</sup>B NMR spectroscopy, with peak assignments further supported by density
functional theory (DFT) calculations. Significantly, very rapid, metal-free
hydrogen transfer between <b>1a</b> and the monomeric aminoborane, <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>, to yield <i>i</i>Pr<sub>2</sub>NH·BH<sub>3</sub> (together with dehydrogenation
products derived from <b>1a</b>) was complete within only 10
min at 20 °C in THF, substantially faster than for the N-substituted
analogue MeNH<sub>2</sub>·BH<sub>3</sub>. DFT calculations revealed
that the hydrogen transfer proceeded via a concerted mechanism through
a cyclic six-membered transition state analogous to that previously
reported for the reaction of the <i>N</i>-dimethyl species
Me<sub>2</sub>NH·BH<sub>3</sub> and <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>. However, as a result of the presence
of an electron donating methyl substituent on boron rather than on
nitrogen, the process was more thermodynamically favorable and the
activation energy barrier was reduced
Latent Structures based-Multivariate Statistical Process Control: a paradigm shift
The basic fundamentals of statistical process control (SPC)
were proposed by Walter Shewhart for data-starved production environments
typical in the 1920s and 1930s. In the 21st century, the traditional
scarcity of data has given way to a data-rich environment typical of highly
automated and computerized modern processes. These data often exhibit
high correlation, rank deficiency, low signal-to-noise ratio, multistage and
multiway structures, and missing values. Conventional univariate and multivariate
SPC techniques are not suitable in these environments. This article
discusses the paradigm shift to which those working in the quality improvement
field should pay keen attention. We advocate the use of latent
structure based multivariate statistical process control methods as efficient
quality improvement tools in these massive data contexts. This is a strategic
issue for industrial success in the tremendously competitive global market.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02.Ferrer, A. (2014). Latent Structures based-Multivariate Statistical Process Control: a paradigm shift. Quality Engineering. 26(1):72-91. https://doi.org/10.1080/08982112.2013.846093S7291261Aparisi, F., Jabaioyes, J., & Carrion, A. (1999). Statistical properties of the lsi multivariate control chart. Communications in Statistics - Theory and Methods, 28(11), 2671-2686. doi:10.1080/03610929908832445Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334lBharati, M. H., MacGregor, J. F., & Tropper, W. (2003). Softwood Lumber Grading through On-line Multivariate Image Analysis Techniques. Industrial & Engineering Chemistry Research, 42(21), 5345-5353. doi:10.1021/ie0210560Bisgaard, S. (2012). The Future of Quality Technology: From a Manufacturing to a Knowledge Economy & From Defects to Innovations. Quality Engineering, 24(1), 30-36. doi:10.1080/08982112.2011.627010Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems, I. Effect of Inequality of Variance in the One-Way Classification. The Annals of Mathematical Statistics, 25(2), 290-302. doi:10.1214/aoms/1177728786Camacho, J., & Ferrer, A. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics, 26(7), 361-373. doi:10.1002/cem.2440Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003Efron, B., & Gong, G. (1983). A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The American Statistician, 37(1), 36-48. doi:10.1080/00031305.1983.10483087Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304Fuchs, C. (1998). Multivariate Quality Control. doi:10.1201/9781482273731Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4), 203-210. doi:10.1080/00224065.1986.11979014Edward Jackson, J. (1985). Multivariate quality control. Communications in Statistics - Theory and Methods, 14(11), 2657-2688. doi:10.1080/03610928508829069Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated With Principal Component Analysis. Technometrics, 21(3), 341-349. doi:10.1080/00401706.1979.10489779Process analysis and abnormal situation detection: from theory to practice. (2002). IEEE Control Systems, 22(5), 10-25. doi:10.1109/mcs.2002.1035214Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699Liu, R. Y. (1995). Control Charts for Multivariate Processes. Journal of the American Statistical Association, 90(432), 1380-1387. doi:10.1080/01621459.1995.10476643Liu, R. Y., Singh, K., & Teng*, J. H. (2004). DDMA-charts: Nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), 235-258. doi:10.1007/s101820400170Liu, R. Y., & Tang, J. (1996). Control Charts for Dependent and Independent Measurements Based on Bootstrap Methods. Journal of the American Statistical Association, 91(436), 1694-1700. doi:10.1080/01621459.1996.10476740LOWRY, C. A., & MONTGOMERY, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27(6), 800-810. doi:10.1080/07408179508936797MacGregor, J. F. (1997). Using On-Line Process Data to Improve Quality: Challenges for Statisticians. International Statistical Review, 65(3), 309-323. doi:10.1111/j.1751-5823.1997.tb00311.xMason, R. L., Champ, C. W., Tracy, N. D., Wierda, S. J., & Young, J. C. (1997). Assessment of Multivariate Process Control Techniques. Journal of Quality Technology, 29(2), 140-143. doi:10.1080/00224065.1997.11979743Montgomery, D. C., & Woodall, W. H. (1997). A Discussion on Statistically-Based Process Monitoring and Control. Journal of Quality Technology, 29(2), 121-121. doi:10.1080/00224065.1997.11979738Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-xNomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002Prats-Montalbán, J. M., Ferrer, A., Malo, J. L., & Gorbeña, J. (2006). A comparison of different discriminant analysis techniques in a steel industry welding process. Chemometrics and Intelligent Laboratory Systems, 80(1), 109-119. doi:10.1016/j.chemolab.2005.08.005Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026Bisgaard, S., Doganaksoy, N., Fisher, N., Gunter, B., Hahn, G., Keller-McNulty, S., … Wu, C. F. J. (2008). The Future of Industrial Statistics: A Panel Discussion. Technometrics, 50(2), 103-127. doi:10.1198/004017008000000136Stoumbos, Z. G., Reynolds, M. R., Ryan, T. P., & Woodall, W. H. (2000). The State of Statistical Process Control as We Proceed into the 21st Century. Journal of the American Statistical Association, 95(451), 992-998. doi:10.1080/01621459.2000.10474292Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232Wierda, S. J. (1994). Multivariate statistical process control—recent results and directions for future research. Statistica Neerlandica, 48(2), 147-168. doi:10.1111/j.1467-9574.1994.tb01439.xWold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693Woodall, W. H. (2000). Controversies and Contradictions in Statistical Process Control. Journal of Quality Technology, 32(4), 341-350. doi:10.1080/00224065.2000.11980013Woodall, W. H., & Montgomery, D. C. (1999). Research Issues and Ideas in Statistical Process Control. Journal of Quality Technology, 31(4), 376-386. doi:10.1080/00224065.1999.11979944Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144. doi:10.1016/s0169-7439(03)00065-0Yu, H., MacGregor, J. F., Haarsma, G., & Bourg, W. (2003). Digital Imaging for Online Monitoring and Control of Industrial Snack Food Processes. Industrial & Engineering Chemistry Research, 42(13), 3036-3044. doi:10.1021/ie020941
The history of degenerate (bipartite) extremal graph problems
This paper is a survey on Extremal Graph Theory, primarily focusing on the
case when one of the excluded graphs is bipartite. On one hand we give an
introduction to this field and also describe many important results, methods,
problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version
of our survey presented in Erdos 100. In this version 2 only a citation was
complete
Radiation thermo-chemical models of protoplanetary discs. III. Impact of inner rims on Spectral Energy Distributions
We study the hydrostatic density structure of the inner disc rim around
HerbigAe stars using the thermo-chemical hydrostatic code ProDiMo. We compare
the Spectral Energy Distributions (SEDs) and images from our hydrostatic disc
models to that from prescribed density structure discs. The 2D continuum
radiative transfer in ProDiMo includes isotropic scattering. The dust
temperature is set by the condition of radiative equilibrium. In the
thermal-decoupled case the gas temperature is governed by the balance between
various heating and cooling processes. The gas and dust interact thermally via
photoelectrons, radiatively, and via gas accommodation on grain surfaces. As a
result, the gas is much hotter than in the thermo-coupled case, where the gas
and dust temperatures are equal, reaching a few thousands K in the upper disc
layers and making the inner rim higher. A physically motivated density drop at
the inner radius ("soft-edge") results in rounded inner rims, which appear
ring-like in near-infrared images. The combination of lower gravity pull and
hot gas beyond ~1 AU results in a disc atmosphere that reaches a height over
radius ratio z/r of 0.1 while this ratio is 0.2 only in the thermo-coupled
case. This puffed-up disc atmosphere intercepts larger amount of stellar
radiation, which translates into enhanced continuum emission in the 3- 30
micron wavelength region from hotter grains at ~500 K. We also consider the
effect of disc mass and grain size distribution on the SEDs self-consistently
feeding those quantities back into the gas temperature, chemistry, and
hydrostatic equilibrium computation.Comment: Accepted to MNRA
Evaluation of an Inexpensive Growth Medium for Direct Detection of Escherichia coli in Temperate and Sub-Tropical Waters
The cost and complexity of traditional methods for the detection of faecal indicator bacteria,
including E. coli, hinder widespread monitoring of drinking water quality, especially in lowincome
countries and outside controlled laboratory settings. In these settings the problem is
exacerbated by the lack of inexpensive media for the detection of E. coli in drinking water.
We developed a new low-cost growth medium, aquatest (AT), and validated its use for the
direct detection of E. coli in temperate and sub-tropical drinking waters using IDEXX QuantiTray1.
AT was compared with IDEXX Colilert-181 and either EC-MUG or MLSB for detecting
low levels of E. coli from water samples from temperate (n = 140; Bristol, UK) and subtropical
regions (n = 50, Pretoria/Tshwane, South Africa). Confirmatory testing (n = 418 and
588, respectively) and the comparison of quantitative results were used to assess performance.
Sensitivity of AT was higher than Colilert-181 for water samples in the UK [98.0%
vs. 86.9%; p<0.0001] and South Africa [99.5% vs. 93.2%; p = 0.0030]. There was no significant
difference in specificity, which was high for both media (>95% in both settings). Quantitative
results were comparable and within expected limits. AT is reliable and accurate for
the detection of E. coli in temperate and subtropical drinking water. The composition of the
new medium is reported herein and can be used freely
A prospective, multicentre, observational cohort study of analgesia and outcome after pneumonectomy
Background Meta-analysis and systematic reviews of epidural compared with paravertebral blockade analgesia techniques for thoracotomy conclude that although the analgesia is comparable, paravertebral blockade has a better short-term side-effect profile. However, reduction in major complications including mortality has not been proven.
Methods The UK pneumonectomy study was a prospective observational cohort study in which all UK thoracic surgical centres were invited to participate. Data presented here relate to the mode of analgesia and outcome. Data were analysed for 312 patients having pneumonectomy at 24 UK thoracic surgical centres in 2005. The primary endpoint was a major complication.
Results The most common type of analgesia used was epidural (61.1%) followed by paravertebral infusion (31%). Epidural catheter use was associated with major complications (odds ratio 2.2, 95% confidence interval 1.1–3.8; P=0.02) by stepwise logistic regression analysis.
Conclusions An increased incidence of clinically important major post-pneumonectomy complications was associated with thoracic epidural compared with paravertebral blockade analgesia. However, this study is unable to provide robust evidence to change clinical practice for a better clinical outcome. A large multicentre randomized controlled trial is now needed to compare the efficacy, complications, and cost-effectiveness of epidural and paravertebral blockade analgesia after major lung resection with the primary outcome of clinically important major morbidity
Healthier prisons: The role of a prison visitors' centre
Since the inception of the prison as a ‘setting’ for health promotion, there has been a focus on how the health of those men and women who spend ‘time inside’ can at least be maintained and if possible, enhanced, during their prison sentence. This paper presents findings from a mainly qualitative evaluation of a prison visitors' centre in the UK. It reports experiences of prisoners' families, prisoners, prison staff, the local community and the ways in which the visitors' centre has contributed positively to their health and well-being. In addition, key stakeholders were interviewed to ascertain the role this visitors' centre has in policy frameworks related to re-offending. The findings from this evaluation underscore how the visitors' centre improved the quality of visits, and contributed towards the maintenance of family ties through the help and support it provides for families and prisoners. The paper concludes by suggesting that visitors' centres are an essential part of a modern prison service helping to address the government's health inequalities agenda
Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions
We study the chromatic polynomial P_G(q) for m \times n square- and
triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary
conditions. This polynomial gives the zero-temperature limit of the partition
function for the antiferromagnetic q-state Potts model defined on the lattice
G. We show how to construct the transfer matrix in the Fortuin--Kasteleyn
representation for such lattices and obtain the accumulation sets of chromatic
zeros in the complex q-plane in the limit n\to\infty. We find that the
different phases that appear in this model can be characterized by a
topological parameter. We also compute the bulk and surface free energies and
the central charge.Comment: 55 pages (LaTeX2e). Includes tex file, three sty files, and 22
Postscript figures. Also included are Mathematica files transfer4_sq.m and
transfer4_tri.m. Journal versio
- …