147 research outputs found

    Differential Disruption of EWS-FLI1 Binding by DNA-Binding Agents

    Get PDF
    Fusion of the EWS gene to FLI1 produces a fusion oncoprotein that drives an aberrant gene expression program responsible for the development of Ewing sarcoma. We used a homogenous proximity assay to screen for compounds that disrupt the binding of EWS-FLI1 to its cognate DNA targets. A number of DNA-binding chemotherapeutic agents were found to non-specifically disrupt protein binding to DNA. In contrast, actinomycin D was found to preferentially disrupt EWS-FLI1 binding by comparison to p53 binding to their respective cognate DNA targets in vitro. In cell-based assays, low concentrations of actinomycin D preferentially blocked EWS-FLI1 binding to chromatin, and disrupted EWS-FLI1-mediated gene expression. Higher concentrations of actinomycin D globally repressed transcription. These results demonstrate that actinomycin D preferentially disrupts EWS-FLI1 binding to DNA at selected concentrations. Although the window between this preferential effect and global suppression is too narrow to exploit in a therapeutic manner, these results suggest that base-preferences may be exploited to find DNA-binding compounds that preferentially disrupt subclasses of transcription factors

    oPOSSUM: integrated tools for analysis of regulatory motif over-representation

    Get PDF
    The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM

    Glutathione influences c-Myc-induced apoptosis in M14 human melanoma cells

    Get PDF
    The objective of this article is to dissect the mechanisms by which the down-regulation of c-Myc induces programmed cell death in melanoma cells. In stable and doxycycline-inducible M14 melanoma cells, down-regulation of c-Myc induced apoptosis subsequent to a decrease in the intracellular reduced glutathione content and a concomitant accumulation of its oxidized form. This redox alteration was associated with a decrease of the enzyme activities of γ-glutamyl-cysteine synthetase and NADPH-dependent GSSG reductase, as well as a consequent glutathione release in the extracellular medium. Cytochrome c was released into the cytosol at very early stages of apoptosis induction, long before detectable production of reactive oxygen species and activation of caspase-9 and -3. Macroarray analysis revealed that down-regulation of c-Myc produced striking changes in gene expression in the section related to metabolism, where the expression of γ-glutamyl-cysteine synthetase and GSSG reductase was found to be significantly reduced. The addition of N-acetyl-L-cysteine or glutathione ethyl ester inhibited the apoptotic process, thus confirming the key role of glutathione in programmed cell death induced by c-Myc

    Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer

    Get PDF
    BACKGROUND: FOXM1 regulates expression of cell cycle related genes that are essential for progression into DNA replication and mitosis. Consistent with its role in proliferation, elevated expression of FOXM1 has been reported in a variety of human tumour entities. FOXM1 is a gene of interest because recently chemical inhibitors of FOXM1 were described to limit proliferation and induce apoptosis in cancer cells in vitro, indicating that FOXM1 inhibitors could represent useful anticancer therapeutics. METHODS: Using immunohistochemistry (IHC) we systematically analysed FOXM1 expression in human invasive breast carcinomas (n = 204) and normal breast tissues (n = 46) on a tissue microarray. Additionally, using semiquantitative realtime PCR, a collection of paraffin embedded normal (n = 12) and cancerous (n = 25) breast tissue specimens as well as benign (n = 3) and malignant mammary cell lines (n = 8) were investigated for FOXM1 expression. SPSS version 14.0 was used for statistical analysis. RESULTS: FOXM1 was found to be overexpressed in breast cancer in comparison to normal breast tissue both on the RNA and protein level (e.g. 8.7 fold as measured by realtime PCR). We found a significant correlation between FOXM1 expression and the HER2 status determined by HER2 immunohistochemistry (P < 0.05). Univariate survival analysis showed a tendency between FOXM1 protein expression and unfavourable prognosis (P = 0.110). CONCLUSION: FOXM1 may represent a novel breast tumour marker with prognostic significance that could be included into multi-marker panels for breast cancer. Interestingly, we found a positive correlation between FOXM1 expression and HER2 status, pointing to a potential role of FOXM1 as a new drug target in HER2 resistant breast tumour, as FOXM1 inhibitors for cancer treatment were described recently. Further studies are underway to analyse the potential interaction between FOXM1 and HER2, especially whether FOXM1 directly activates the HER2 promoter

    Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence

    Get PDF
    FoxM1 is a member of the Forkhead family of transcription factors and is implicated in inducing cell proliferation and some forms of tumorigenesis. It binds promoter regions with a preference for tandem repeats of a consensus ‘TAAACA’ recognition sequence. The affinity of the isolated FoxM1 DNA-binding domain for this site is in the micromolar range, lower than observed for other Forkhead proteins. To explain these FoxM1 features, we determined the crystal structure of its DNA-binding domain in complex with a tandem recognition sequence. FoxM1 adopts the winged-helix fold, typical of the Forkhead family. Neither ‘wing’ of the fold however, makes significant contacts with the DNA, while the second, C-terminal, wing adopts an unusual ordered conformation across the back of the molecule. The lack of standard DNA–‘wing’ interactions may be a reason for FoxM1’s relatively low affinity. The role of the ‘wings’ is possibly undertaken by other FoxM1 regions outside the DBD, that could interact with the target DNA directly or mediate interactions with other binding partners. Finally, we were unable to show a clear preference for tandem consensus site recognition in DNA-binding, transcription activation or bioinformatics analysis; FoxM1's moniker, ‘Trident’, is not supported by our data

    FOXM1 Induces a Global Methylation Signature That Mimics the Cancer Epigenome in Head and Neck Squamous Cell Carcinoma

    Get PDF
    The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions

    FOXM1 binds directly to non-consensus sequences in the human genome.

    Get PDF
    BACKGROUND: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. RESULTS: An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. CONCLUSIONS: A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences.We would like to acknowledge the Genomics and bioinformatics core at the CRUK Research Institute for the Illumina sequencing and the Proteomics core for the LC/MS-MS protein analysis for the RIME experiments. We acknowledge the support from The University of Cambridge and Cancer Research UK. The Balasubramanian Laboratory is supported by core funding from Cancer Research UK (C14303/A17197). SB is a Wellcome Trust Principle Investigator.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0696-

    Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology

    Get PDF
    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called “hidden spindle hub”, proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore