889 research outputs found

    Analysis of Chimpanzee History Based on Genome Sequence Alignments

    Get PDF
    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated ∼1,290,000 years ago, western and other common chimpanzees ∼510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5–7 million years ago when the ancestors of humans separated from those of the chimpanzees

    Retrospective analyses of cisplatin-based doublet combination chemotherapy in patients with advanced gastric cancer

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>Cisplatin-based chemotherapy, in combination with fluoropyrimidines or taxanes, have demonstrated efficacy against advanced gastric cancer (AGC). This retrospective study was performed with the data obtained from our cancer chemotherapy registry and eight another cancer centers.</p> <p>Methods</p> <p>In 2008, a total of 283 AGC patients were treated with cisplatin-based doublet chemotherapy in the first-line setting: capecitabine plus cisplatin (XP, n = 77), S-1 plus cisplatin (SP, n = 97), taxanes (docetaxel, paclitaxel) plus cisplatin (TP, n = 72), and 5-fluorouracil plus platinum (FP, n = 37). The primary endpoint of this study was overall survival (OS) and the secondary endpoints were safety, response rate and progression-free survival (PFS).</p> <p>Results</p> <p>The median age was 54 years with a range of 28-78 years and median delivered number of chemotherapy cycles were XP: 4, SP: 5, TP: 5 and FP: 5, respectively. Objective tumor responses (38%; 95% CI, 32-43%) were 40% for XP, 42% for SP, 36% for DP, and 24% for FP. The estimated median PFS was 4.5 months (95% CI, 3.6-5.4 months) and the median OS was 12.3 months (95% CI, 10.8-13.7 months). No statistically significant difference was found between each regimen used as first-line chemotherapy. At multivariate analysis, independent prognostic parameters for OS were prior gastrectomy, peritoneal dissemination, performance status and hemoglobin level</p> <p>Conclusion</p> <p>All of the cisplatin-based doublet chemotherapy regimens appear to be active as first-line chemotherapy for AGC. With better patient selection according to clinical parameters and molecular markers, clinical outcomes of AGC patients in first-line setting can be improved.</p

    Evidence for B- -> tau- nu_bar with a Semileptonic Tagging Method

    Full text link
    We present a measurement of the decay B- -> tau- nu_bar using a data sample containing 657 million BB_bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. A sample of BB_bar pairs are tagged by reconstructing one B meson decaying semileptonically. We detect the B- -> tau- nu_bar candidate in the recoil. We obtain a signal with a significance of 3.6 standard deviations including systematic uncertainties, and measure the branching fraction to be Br(B- -> tau- nu_bar) = [1.54+0.38-0.37(stat)+0.29-0.31(syst)]*10^-4. This result confirms the evidence for B- -> tau- nu_bar obtained in a previous Belle measurement that used a hadronic B tagging method.Comment: 7 pages, 3 figures, corrected references, to appear in PRD-R

    Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    Get PDF
    International audienceBackground: Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding: Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance: A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation

    An Antireflective Nanostructure Array Fabricated by Nanosilver Colloidal Lithography on a Silicon Substrate

    Get PDF
    An alternative method is presented for fabricating an antireflective nanostructure array using nanosilver colloidal lithography. Spin coating was used to produce the multilayered silver nanoparticles, which grew by self-assembly and were transformed into randomly distributed nanosilver islands through the thermodynamic action of dewetting and Oswald ripening. The average size and coverage rate of the islands increased with concentration in the range of 50–90 nm and 40–65%, respectively. The nanosilver islands were critically affected by concentration and spin speed. The effects of these two parameters were investigated, after etching and wet removal of nanosilver residues. The reflection nearly disappeared in the ultraviolet wavelength range and was 17% of the reflection of a bare silicon wafer in the visible range

    Studies of the Decay B+- -> D_CP K+-

    Get PDF
    We report studies of the decay B+- -> D_CP K+-, where D_CP denotes neutral D mesons that decay to CP eigenstates. The analysis is based on a 29.1/fb data sample of collected at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+ e- storage ring. Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes involving D_CP are determined to be B(B- -> D_1 K-)/B(B- -> D_1 pi-)=0.125 +- 0.036 +- 0.010 and B(B- -> D_2 K-)/B(B- -> D_2 pi-)=0.119 +- 0.028 +- 0.006, where indices 1 and 2 represent the CP=+1 and CP=-1 eigenstates of the D0 - anti D0 system, respectively. We also extract the partial rate asymmetries for B+- -> D_CP K+-, finding A_1 = 0.29 +- 0.26 +- 0.05 and A_2 = -0.22 +- 0.24 +- 0.04.Comment: 10 pages, 2 figures, submitted to Physical Review Letter

    High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 559, doi:10.1186/1471-2164-11-559.Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR) and their RNA transcription level by quantitative PCR (qPCR) experiments. We have established the first tissue transcriptional analysis of a deep-sea hydrothermal vent animal and generated a searchable catalog of genes that provides a direct method of identifying and retrieving vast numbers of novel coding sequences which can be applied in gene expression profiling experiments from a non-conventional model organism. This provides the most comprehensive sequence resource for identifying novel genes currently available for a deep-sea vent organism, in particular, genes putatively involved in immune and inflammatory reactions in vent mussels. The characterization of the B. azoricus transcriptome will facilitate research into biological processes underlying physiological adaptations to hydrothermal vent environments and will provide a basis for expanding our understanding of genes putatively involved in adaptations processes during post-capture long term acclimatization experiments, at "sea-level" conditions, using B. azoricus as a model organism.We acknowledge the Portuguese Foundation for Science and Technology, FCT-Lisbon and the Regional Azorean Directorate for Science and Technology, DRCT-Azores, for pluri-annual and programmatic PIDDAC and FEDER funding to IMAR/DOP Research Unit #531 and the Associated Laboratory #9 (ISR-Lisboa); the Luso-American Foundation FLAD (Project L-V- 173/2006); the Biotechnology and Biomedicine Institute of the Azores (IBBA), project M.2.1.2/I/029/2008-BIODEEPSEA and the project n° FCOMP-01-0124- FEDER-007376 (ref: FCT PTDC/MAR/65991/2006-IMUNOVENT; coordinated by RB) under the auspices of the COMPETE program

    Differences in the Cognitive Skills of Bonobos and Chimpanzees

    Get PDF
    While bonobos and chimpanzees are both genetically and behaviorally very similar, they also differ in significant ways. Bonobos are more cautious and socially tolerant while chimpanzees are more dependent on extractive foraging, which requires tools. The similarities suggest the two species should be cognitively similar while the behavioral differences predict where the two species should differ cognitively. We compared both species on a wide range of cognitive problems testing their understanding of the physical and social world. Bonobos were more skilled at solving tasks related to theory of mind or an understanding of social causality, while chimpanzees were more skilled at tasks requiring the use of tools and an understanding of physical causality. These species differences support the role of ecological and socio-ecological pressures in shaping cognitive skills over relatively short periods of evolutionary time

    Nanosilver Colloids-Filled Photonic Crystal Arrays for Photoluminescence Enhancement

    Get PDF
    For the improved surface plasmon-coupled photoluminescence emission, a more accessible fabrication method of a controlled nanosilver pattern array was developed by effectively filling the predefined hole array with nanosilver colloid in a UV-curable resin via direct nanoimprinting. When applied to a glass substrate for light emittance with an oxide spacer layer on top of the nanosilver pattern, hybrid emission enhancements were produced from both the localized surface plasmon resonance-coupled emission enhancement and the guided light extraction from the photonic crystal array. When CdSe/ZnS nanocrystal quantum dots were deposited as an active emitter, a total photoluminescence intensity improvement of 84% was observed. This was attributed to contributions from both the silver nanoparticle filling and the nanoimprinted photonic crystal array
    corecore