22 research outputs found

    What is a Macrophyte Patch? Patch Identification in Aquatic Ecosystems and Guidelines for Consistent Delineation

    Get PDF
    Schoelynck J, Creëlle S, Buis K, De Mulder T, Emsens W, Hein T, Meire D, Meire P, Okruszko T, Preiner S, Roldan Gonzalez R, Silinski A, Temmerman S, Troch P, Van Oyen T, Verschoren V, Visser F, Wang C, Wolters J, Folkard A, in press. . Ecohydrology & Hydrobiology. DOI 10.1016/j.ecohyd.2017.10.00

    Taking One Step Back in Familial Hypercholesterolemia:STAP1 Does Not Alter Plasma LDL (Low-Density Lipoprotein) Cholesterol in Mice and Humans

    Get PDF
    International audienceSTAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1 -/ - ) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1 -/ - mice was transplanted to Ldlr -/ - mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol

    Foundation species enhance food web complexity through non-trophic facilitation

    Get PDF
    Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species’ food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.</p

    Endoscopic full-thickness resection of T1 colorectal cancers:a retrospective analysis from a multicenter Dutch eFTR registry

    Get PDF
    Background Complete endoscopic resection and accurate histological evaluation for T1 colorectal cancer (CRC) are critical in determining subsequent treatment. Endoscopic full-thickness resection (eFTR) is a new treatment option for T1 CRC<2cm. We aimed to report clinical outcomes and short-term results. Methods Consecutive eFTR procedures for T1 CRC, prospectively recorded in our national registry between November 2015 and April 2020, were retrospectively analyzed. Primary outcomes were technical success and R0 resection. Secondary outcomes were histological risk assessment, curative resection, adverse events, and short-term outcomes. Results We included 330 procedures: 132 primary resections and 198 secondary scar resections after incomplete T1 CRC resection. Overall technical success, R0 resection, and curative resection rates were 87.0% (95% confidence interval [CI] 82.7%-90.3%), 85.6% (95%CI 81.2%-89.2%), and 60.3% (95%CI 54.7%-65.7%). Curative resection rate was 23.7% (95%CI 15.9%-33.6%) for primary resection of T1 CRC and 60.8% (95%CI 50.4%-70.4%) after excluding deep submucosal invasion as a risk factor. Risk stratification was possible in 99.3%. The severe adverse event rate was 2.2%. Additional oncological surgery was performed in 49/320 (15.3%), with residual cancer in 11/49 (22.4%). Endoscopic follow-up was available in 200/242 (82.6%), with a median of 4 months and residual cancer in 1 (0.5%) following an incomplete resection. Conclusions eFTR is relatively safe and effective for resection of small T1 CRC, both as primary and secondary treatment. eFTR can expand endoscopic treatment options for T1 CRC and could help to reduce surgical overtreatment. Future studies should focus on long-term outcomes

    The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream

    No full text
    Habitat structural complexity provided by aquatic macrophytes in lowland streams affects the associated epiphytic macroinvertebrate assemblages in both direct (increased microhabitat diversity, refuge against predation) and indirect ways (e.g. current attenuation by physical structures). In a correlative field study carried out in two different years in a Belgian stream, we investigated the effects of the factors macrophyte identity, macrophyte complexity (represented as fractal complexity) and current velocity on the composition of the macroinvertebrate community associated with monospecific macrophyte patches, consisting of plants with differing structural complexity; Sparganium emersum Rehmann (least complex), Potamogeton natans L. (intermediate) and Callitriche obtusangula Le Gall (most complex). In addition to significantly lower within-patch current velocity being observed, vegetation stands consisting of complex macrophytes also harboured significantly richer macroinvertebrate communities than stands of simpler macrophytes. A significant part of the variation in the macroinvertebrate community composition could be explained by plant identity, macrophyte complexity and current velocity. However, it was not possible to determine the relative importance of these three factors, because of their high degree of intercorrelation. Additionally, the explanatory power of these factors was higher under conditions of high current velocity, suggesting a role of macrophyte patches as instream flow refugia for macroinvertebrates

    Stable isotope measurements confirm consumption of submerged macrophytes by macroinvertebrate and fish taxa

    No full text
    Many macrophyte species in lowland streams exhibit signs of grazing and herbivore damage, even though herbivory by aquatic macroinvertebrates and fish is generally considered to be of little importance. In this study, we collected evidence for the hypothesis that herbivory on macrophytes by macroinvertebrates and fish is more widespread than assumed. We measured the dual stable isotope signatures (δ13C and δ15N) of organic matter, epiphyton, submerged macrophytes, macroinvertebrates and fish in a Belgian lowland stream. There was a clear distinction in isotopic signatures of the different basal resources, allowing the use of the SIAR mixing model. These calculations revealed the consumption of macrophyte tissue not only by the phytophagous larvae of Nymphula nitidulata Hufnagel (Lepidoptera: Crambidae), but also by Baetidae nymphs (Ephemeroptera), Orthocladiinae larvae (Diptera: Chironomidae), the crayfish Orconectus limosus Rafinesque (Decapoda: Cambaridae) and the fish Gobio gobio L. (Cypriniformes: Cyprinidae) which are classified as feeding on other resources. Although the potential share of macrophyte biomass in the diet of macroinvertebrates and fish was demonstrated to be up to 49%, this amount is only a small percentage of the total standing macrophyte biomass in a lowland stream. However, the impact of this herbivory may still be substantial because consumption may comprise a significant fraction of the daily primary production. Additionally, small-scale herbivory may still have a negative impact on macrophyte growth and survival, for example through consumption of apical meristems and the increased susceptibility to diseases and toxins if the macrophyte’s epidermis is damaged
    corecore