458 research outputs found

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project

    Get PDF
    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. Results: The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of “ideal types” of disabled users may reinforce stereotypes or drown out participant “voices”. Conclusions: Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a “duty of care” while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies

    Brain Computer Interfaces for inclusion

    Get PDF
    All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately

    Brain-Computer Interface Based on Generation of Visual Images

    Get PDF
    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier

    The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury

    Get PDF
    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy

    Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex

    Get PDF
    People can learn over training sessions to increase or decrease sensorimotor rhythms (SMRs) in the electroencephalogram (EEG). Activity-dependent brain plasticity is thought to guide spinal plasticity during motor skill learning; thus, SMR training may affect spinal reflexes and thereby influence motor control. To test this hypothesis, we investigated the effects of learned mu (8–13 Hz) SMR modulation on the flexor carpi radialis (FCR) H-reflex in 6 subjects with no known neurological conditions and 2 subjects with chronic incomplete spinal cord injury (SCI). All subjects had learned and practiced over more than 10 < 30-min training sessions to increase (SMR-up trials) and decrease (SMR-down trials) mu-rhythm amplitude over the hand/arm area of left sensorimotor cortex with ≥80% accuracy. Right FCR H-reflexes were elicited at random times during SMR-up and SMR-down trials, and in between trials. SMR modulation affected H-reflex size. In all the neurologically normal subjects, the H-reflex was significantly larger [116% ± 6 (mean ± SE)] during SMR-up trials than between trials, and significantly smaller (92% ± 1) during SMR-down trials than between trials (p < 0.05 for both, paired t-test). One subject with SCI showed similar H-reflex size dependence (high for SMR-up trials, low for SMR-down trials): the other subject with SCI showed no dependence. These results support the hypothesis that SMR modulation has predictable effects on spinal reflex excitability in people who are neurologically normal; they also suggest that it might be used to enhance therapies that seek to improve functional recovery in some individuals with SCI or other CNS disorders

    BNCI Horizon 2020 - Towards a Roadmap for Brain/Neural Computer Interaction

    Get PDF
    In this paper, we present BNCI Horizon 2020, an EU Coordination and Support Action (CSA) that will provide a roadmap for brain-computer interaction research for the next years, starting in 2013, and aiming at research efforts until 2020 and beyond. The project is a successor of the earlier EU-funded Future BNCI CSA that started in 2010 and produced a roadmap for a shorter time period. We present how we, a consortium of the main European BCI research groups as well as companies and end user representatives, expect to tackle the problem of designing a roadmap for BCI research. In this paper, we define the field with its recent developments, in particular by considering publications and EU-funded research projects, and we discuss how we plan to involve research groups, companies, and user groups in our effort to pave the way for useful and fruitful EU-funded BCI research for the next ten years

    Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study

    Get PDF
    Background Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent). Methods/Design This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded. In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes

    Towards a Cure for BCI Illiteracy

    Get PDF
    Brain–Computer Interfaces (BCIs) allow a user to control a computer application by brain activity as acquired, e.g., by EEG. One of the biggest challenges in BCI research is to understand and solve the problem of “BCI Illiteracy”, which is that BCI control does not work for a non-negligible portion of users (estimated 15 to 30%). Here, we investigate the illiteracy problem in BCI systems which are based on the modulation of sensorimotor rhythms. In this paper, a sophisticated adaptation scheme is presented which guides the user from an initial subject-independent classifier that operates on simple features to a subject-optimized state-of-the-art classifier within one session while the user interacts the whole time with the same feedback application. While initial runs use supervised adaptation methods for robust co-adaptive learning of user and machine, final runs use unsupervised adaptation and therefore provide an unbiased measure of BCI performance. Using this approach, which does not involve any offline calibration measurement, good performance was obtained by good BCI participants (also one novice) after 3–6 min of adaptation. More importantly, the use of machine learning techniques allowed users who were unable to achieve successful feedback before to gain significant control over the BCI system. In particular, one participant had no peak of the sensory motor idle rhythm in the beginning of the experiment, but could develop such peak during the course of the session (and use voluntary modulation of its amplitude to control the feedback application)
    • …
    corecore