23 research outputs found

    How top consumers structure food webs with multiple pathways of energy flow

    Get PDF

    The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany

    Get PDF
    Eutrophication of inland waters is an environmental issue that is becoming more common with climatic variability. Monitoring of this aquatic problem is commonly based on the chlorophyll-a concentration monitored by routine sampling with limited temporal and spatial coverage. Remote sensing data can be used to improve monitoring, especially after the launch of the MultiSpectral Instrument (MSI) on Sentinel-2. In this study, we compared the estimation of chlorophyll-a (chl-a) from different bio-optical algorithms using hyperspectral proximal remote sensing measurements, from simulated MSI responses and from an MSI image. For the satellite image, we also compare different atmospheric corrections routines before the comparison of different bio-optical algorithms. We used in situ data collected in 2019 from 97 sampling points across 19 different lakes. The atmospheric correction assessment showed that the performances of the routines varied for each spectral band. Therefore, we selected C2X, which performed best for bands 4 (root mean square error—RMSE = 0.003), 5 (RMSE = 0.004) and 6 (RMSE = 0.002), which are usually used for the estimation of chl-a. Considering all samples from the 19 lakes, the best performing chl-a algorithm and calibration achieved a RMSE of 16.97 mg/m3. When we consider only one lake chain composed of meso-to-eutrophic lakes, the performance improved (RMSE: 10.97 mg/m3). This shows that for the studied meso-to-eutrophic waters, we can reliably estimate chl-a concentration, whereas for oligotrophic waters, further research is needed. The assessment of chl-a from space allows us to assess spatial dynamics of the environment, which can be important for the management of water resources. However, to have an accurate product, similar optical water types are important for the overall performance of the bio-optical algorithm

    Land-use type temporarily affects active pond community structure but not gene expression patterns

    Get PDF
    Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes

    Connectivity and Synchronisation of Lake Ecosystems in Space and Time - CONNECT

    Get PDF
    Within the project CONNECT we are establishing a collaborative network between experts in remote sensing (RS) and freshwater ecology to study connectivity and coherence of lake ecosystems in a regional context at unprecedented temporal and spatial resolution. The overall aim is to understand the yet unexplained variation in phytoplankton dynamics among river-connected German lowland lakes, many of which are presently classified as in poor to bad ecological status. These lakes often face a high risk of eutrophication, mass development of harmful algal blooms, and high production of greenhouse gases. We suggest if measured on adequate temporal and spatial scales much of the among-lake variation in phytoplankton dynamics to be explained by the strength of hydrological lake-to-lake and lake-to-catchment connectivity as modulated by lake depth and mixing regime. This may have profound implications for the maximum intensity, spatial range and regional-scale magnitude of eutrophication impacts. We will use (i) a large-scale experimental manipulation of lake connectivity, and (ii) an observational field campaign contrasting deep and shallow river-connected lakes, to challenge this research frontier by an innovative combination of automatic high- frequency in situ measurements with state of the art near-to-far RS technology. Climate change is expected to alter the hydrology, and thus the connectivity of lake-river systems. However, it is also predicted to increase extreme weather events leading to an increased input of nutrients as well as colored dissolved organic matter (cDOM). By providing data of high spatio-temporal coverage, CONNECT will provide basic high quality data to better understand mechanisms of eutrophication at the local and regional scale. Our data, thus, provide a valuable basis to improve current management of such river-connected lake ecosystems under future climate scenarios. To reach this ambitious goal, the project will (i) build a cross- disciplinary collaborative network of excellence, (ii) develop a mechanistic understanding of lake ecosystem functioning at local and regional scale, (iii) improve future environmental monitoring and interpretation of available data from inland waters, and (iv) support more effective integrated management of river-connected lakes to mitigate eutrophication impacts

    A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector

    Get PDF
    Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.Peer reviewe

    Book Review

    No full text

    Mixotrophy and intraguild predation – dynamic consequences of shifts between food web motifs

    No full text
    Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems

    Differences in size distribution of marine phytoplankton in presence versus absence of jellyfish support theoretical predictions on top-down control patterns along alternative energy pathways

    No full text
    While theoretical food web studies highlight the importance of alternative energy pathways in shaping community response to bottom-up and top-down forcing, empirical insight on the relevance of the predicted patterns is largely lacking. In marine plankton food webs differences in food size spectra between ciliates and copepods lead to alternative energy pathways, one expanding from small phytoplankton over ciliates to copepods, the other from large edible phytoplankton directly to copepods. Correspondingly, predation pressure by copepods leads to an increase of small phytoplankton through top-down control of copepods on ciliates, but to a decrease of large phytoplankton through direct predation by copepods. Hence, food web theory predicts a shift from the dominance of large to small algae along an enrichment gradient. This prediction clearly deviates from the general assumption of a shift from small fast growing to larger slow-growing phytoplankton taxa with increasing nutrient availability. However, if copepods themselves are under top-down control by strong predation through planktivores such as fish or jellyfish, dominance of large algae is expected throughout the enrichment gradient. We tested these predictions by analyzing the phytoplankton composition from numerous marine lakes and lagoon sites located on the archipelago of Palau covering a wide range of nutrient levels, comparing sites lacking large numbers of higher trophic levels with sites harboring high densities of jellyfish. The observed patterns strongly support that higher trophic levels influence the phytoplankton size distribution along a nutrient enrichment gradient, highlighting the importance of alternate energy pathways in food webs for community responses

    Appendix C. A description of the symmetrical niche model under the assumption of nutrient recycling.

    No full text
    A description of the symmetrical niche model under the assumption of nutrient recycling
    corecore