11 research outputs found

    UNRAVELING ASTROCYTE BEHAVIOUR IN THE SPACE BRAIN: RADIATION RESPONSE OF PRIMARY ASTROCYTES

    Get PDF
    Exposure to ionizing radiation as part of space radiation, is a major limiting factor for crewed space exploration. Astronauts will encounter different types of space radiation, which may cause cognitive damage causing detrimental effects on learning and attention, elevated anxiety and depression. Due to its limited regenerative potential, especially the central nervous system (CNS) is very vulnerable towards radiation-induced damage. Astrocytes, the most abundant glial cells of the CNS, have different crucial functions in the CNS, e.g. maintaining normal brain function. In this work, the response of astrocytes towards low linear energy transfer (LET) X-rays and high-LET carbon ions was compared to unravel possible specific effects of space-relevant high-LET radiation. [...

    Radiation Response in Primary Murine Astrocytes

    No full text
    Background: Ionizing radiation, as part of space radiation, is still the limiting factor in astronautic space exploration, as it is able to induce severe cellular damage. Due to its limited regenerative potential, especially the central nervous system is very vulnerable towards radiation-induced damage. Astrocytes, as the most abundant glial cell type in the central nervous system, exhibit diverse crucial functions for neuronal survival and are in general responsible for the maintenance of the normal function of the central nervous system and were therefore chosen as focus of the investigations in this study. Methods: Primary murine astrocytes were irradiated with different doses of X-rays, used as reference radiation quality, and the radiation response was subsequently analyzed with regard to different biological endpoints. DNA damage and repair was assessed for different doses and over time with an immunofluorescence based approach and analysis via microscopy or flow cytometry. Furthermore, the cell cycle progression was investigated on the basis of the DNA content, using flow cytometry. In addition to that, also radiationinduced changes in gene expression levels were investigated by PCR. Results: Analysis of the radiation-induced DNA double strand breaks and the respective repair revealed a clear dose- and time-dependency. With higher X-ray doses the total amount of damage was observed to increase significantly, reaching a maximum at 1 h postexposure, which subsequently was found to be decreasing, mainly due to DNA damage repair and at later time points only minor fractions of residual damage remained unrepaired. Furthermore, a non-significant tendency towards upregulated gene expression of cell-cycleand inflammation-associated genes was found. Cell cycle progression was observed to be mostly unaffected, although after exposure to high X-ray doses a trend towards an increased fraction of cells in S-phase was shown. Conclusion: Astrocytes were shown to exhibit high repair capacity in response to radiation induced DNA damage and were in general observed to be relatively radio-resistant

    Response of primary astrocytes to ionizing radiation exposure

    No full text
    Introduction: Exposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes’ response towards low linear energy transfer (LET) X-rays and high-LET carbon (¹²C) and iron (⁵⁶Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Methods: Primary murine cortical astrocytes were irradiated with different doses of X-rays, ¹²C and ⁵⁶Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes’ reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X-rays were investigated by mRNA-sequencing. RT-qPCR for the genes of interest was performed with X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6 and Tgfβ1. Levels of the pro-inflammatory cytokine IL-6 were determined using ELISA. Results: Astrocytes showed distinct responses towards the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSB) and the respective repair was dose-, LET- and time-dependent. Proliferation and cell cycle progression were not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation. Conclusion: Primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types. Acknowledgement: We thank our liaison scientists at GSI, Insa Schröder and Denise Eckart, for their excellent technical assistance in preparation of and during the beamtimes. Ulrich Weber and Thomas Friedrich at GSI are acknowledged for their dedicated and precise irradiation of our samples at GSI. Our thanks also go to the beam operators at GSI for operating the accelerator during our experiments

    Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes

    Get PDF
    Introduction: Exposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (¹²C) and iron (⁵⁶Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated. Methods: Primary murine cortical astrocytes were irradiated with different doses of X-rays, ¹²C and ⁵⁶Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity. Results: Astrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation. Discussion: In conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types

    Unraveling the role of glia cells in the space brain: Response of primary astrocytes to ionizing radiation exposure

    No full text
    Introduction: Exposure to space radiation is a major limiting factor for crewed space exploration. Astronauts encounter different types of space radiation (high-energy protons, He and heavy ions), which may cause a cognitive decline that manifests amongst others as learning difficulties, and also elevated anxiety and depression. Due to its limited regenerative potential, the central nervous system (CNS) is vulnerable towards radiation-induced damage. Astrocytes, the most abundant glial cells of the CNS, have different crucial functions in the CNS, e.g. maintaining normal brain function. In this work, the response of astrocytes towards low linear energy transfer (LET) X-rays and high-LET heavy ions was compared to unravel possible specific effects of space-relevant high-LET radiation

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore