17 research outputs found

    Structure and lithology of the Japan Trench subduction plate boundary fault

    Get PDF
    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin

    Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements

    Get PDF
    The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks

    Oceanic transform fault seismicity and slip mode influenced by seawater infiltration

    No full text
    International audienceOceanic transform faults that offset mid-ocean ridges slip through earthquakes and aseismic creep. The mode of slip varies with depth and along strike, with some fault patches that rupture in large, quasi-periodic earthquakes at temperatures <600 °C, and others that slip through creep and microearthquakes at temperatures up to 1,000 °C. Rocks from both fast- and slow-slipping transforms show evidence of interactions with seawater up to temperatures of at least 900 °C. Here we present a model for the mechanical structure of oceanic transform faults based on fault thermal structure and the impacts of hydration and metamorphic reactions on mantle rheology. Deep fluid circulation is accounted for in a modified friction-effective pressure law and in ductile flow laws for olivine and serpentine. Combined with observations of grain size reduction and hydrous mineralogy from high-strain mylonites, our model shows that brittle and ductile deformation can occur over a broad temperature range, 300-1,000 °C. The ability of seawater to penetrate faults determines whether slip is accommodated at depth by seismic asperities or by aseismic creep in weak, hydrous shear zones. Our results suggest that seawater infiltration into ocean transform faults controls the extent of seismicity and spatiotemporal variations in the mode of slip

    Time‐Lapse Seafloor Surveys Reveal How Turbidity Currents and Internal Tides in Monterey Canyon Interact withthe Seabed at Centimeter‐Scale

    Get PDF
    Here we show how ultra-high resolution seabed mapping using new technology can help to understand processes that sculpt submarine canyons. Time-lapse seafloor surveys were conducted in the axis of Monterey Canyon, ∼50 km from the canyon head (∼1840 m water depth) over an 18-month period. These surveys comprised 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution stereophotographic imagery. The bathymetry data reveal centimeter-scale textures that would be undetectable by more traditional survey methods. Upward-looking Acoustic Doppler Current Profilers at the site recorded the flow character of internal tides and the passage of three turbidity currents, while sediment cores collected from the site record flow deposits. Combined with flow and core data, the bathymetry shows how turbidity currents and internal tides modify the seabed. The turbidity currents drape sediment across the site, infilling bedform troughs and smoothing erosional features carved by the internal tides (e.g., rippled scours). Turbidity currents with speeds of 0.9 – 3.3 m/s failed to cause notable bedform movement, which is surprising given that flows with similar speeds produced rapid bedform migration elsewhere, including upper Monterey Canyon. The lack of migration may be related to the character of the underlying substrate or indicate that turbidity currents at the site lack dense, near-bed layers. The scale of scours produced by the internal tides (≤0.7 m/s) approaches the scale of features recorded in the ancient rock record. Thus, these results illustrate how the scale gap between seabed mapping technology and the rock record may eventually be bridged

    Internal structure of the shallow plate boundary slip zone for the 2011 Tohoku-Oki Earthquake sampled during the Japan Trench Fast Drilling Project (JFAST)

    No full text
    The Mw=9 2011 Tohoku-oki earthquake ruptured to the Japan Trench, with largest coseismic slip (c. 50 m) unexpectedly occurring on the shallow part of the décollement. The JFAST Project, Integrated Ocean Drilling Program (IODP) Expedition 343/343T, successfully located and sampled the shallow part of the subduction thrust shear zone (Chester et al. 2013a,b). Temperature data from a downhole observatory confirm that a thin and weak clay rich layer, identified in logging-while-drilling data and core-sample observations, is the plate boundary fault that accommodated the large slip of the earthquake rupture, as well as most of the kilometres interplate motion at the drill site (Chester et al. 2013b; Fulton et al. 2013; Lin et al. 2013; Ujiie et al. 2013). The décollement separates folded and faulted frontal prism sediments in the overriding plate from incoming flat-lying sediments along the top of the subducting plate (Chester et al., 2013b). Observed stratigraphic discontinuities at the boundary and inside the recovered fault material (Chester et al. 2013a) suggest that it contains multiple slip surfaces, many of them probably not recovered. Core analysis shows that the décollement is localized upon a strongly deformed 5≤m thick layer of smectite-rich clay, likely derived from the Paleogene to middle Miocene Pacific Plate pelagic sediments. A pervasive scaly fabric, defined by polished lustrous surfaces, commonly striated, enclosing lenses of less fissile material (phacoids), which are self-similar at scales ranging from a few micrometers to centimeters, is distributed throughout the clay. The spacing of the surfaces increase from millimeter scale near the top of the recovered core to centimetre scale, toward the lower tectonic contact, reflecting a decrease in the magnitude of shear strain. In the upper highly sheared section, one extremely narrow discontinuity, crosscuts this fabric, truncating without deflection the foliations that are not parallel across the contact. While the scaly fabric is indicative of distributed shear across the recovered interval (~1 m) the sharp discontinuity, resulted from localized deformation and similar to those observed at coseismic slip rates in friction experiments, could record seismic slip although not necessarily that of the Tohoku-Oki earthquak

    Internal structure of the shallow Japan Trench décollement: insights into the long-term evolution of the margin and coseismic slip processes

    No full text
    The 2011 MW 9.0 Tohoku-oki earthquake ruptured to the Japan Trench, with largest coseismic slip occurring on the shallow part of the décollement. To better understand the controls on rupture propagation and slip, the structure and composition of the décollement near the trench were investigated during Integrated Ocean Drilling Project Expedition 343 (the JFAST project). The plate boundary décollement is localized upon a ≤4.86 m thick layer of smectite-rich pelagic clay. Stratigraphic discontinuities at the base of the hangingwall, top of the footwall and surrounding a horse of intra-décollement mudstone suggest that the fault contains multiple slip surfaces, although most of these were not recovered. The décollement damage zone is \u3c10 m wide in both the overlying frontal prism and down-going Pacific plate showing that long-term displacement on the plate boundary fault near the Japan Trench is extremely localized and in turn suggesting the fault is weak relative to the bounding sediments. A pervasive composite foliation, or scaly fabric, defined by striated, lustrous surfaces enclosing lenses of less fissile phacoids is distributed throughout the décollement clay. The asymmetry of phacoids is consistent with top-to-the-trench shear sense. Several narrow, planar discontinuities crosscut the scaly fabric, truncating or disrupting the foliation and in one case juxtaposing domains of the clay with different foliation orientation and intensity, indicating relative displacement. The scaly fabric is indicative of distributed shear across the recovered interval (~1 m), and may represent deformation at interseismic strain rates. The sharp discontinuities within the décollement clay, however, resulted from slip localization. They are similar to structures produced in friction experiments conducted at coseismic slip rates suggesting they may record earthquake deformation

    Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits

    Get PDF
    Submarine canyons are conduits for episodic and powerful sediment density flows (commonly called turbidity currents) that move globally significant amounts of terrestrial sediment and organic carbon into the deep sea, forming some of the largest sedimentary deposits on Earth. The only record available for most turbidity currents is the deposit they leave behind. Therefore, to understand turbidity current processes, we need to determine the degree to which these flows are represented by their deposits. However, linking flows and deposits is a major long-standing scientific challenge. There are few detailed measurements from submarine turbidity currents in action, and even fewer direct measurements that can be compared to resulting seabed deposits. Recently, an extensive array of moorings along Monterey Canyon, offshore California, took measurements and samples during sediment density flow events, providing the most comprehensive dataset to date of turbidity current flows and their deposits. Here, we use sediment trap samples, velocity measurements, and seafloor cores to document how sand is transported through a submarine canyon, and how the transported sediment is represented in seafloor deposits. Sediment trap samples from events contain primarily fine to medium-grained sand with sharp bases, normal grading, and muddy tops. Sediment captured from the water column during the flow shows normal grading, which is broadly consistent with the initial peak and waning of flow velocities measured at a single height within the flow, and may be enhanced by collapsing flows. Flow events contain coarser sand concentrated toward the seafloor and larger grain sizes on the seafloor or in the dense near-bed layer, possibly representative of stratified flows. Although flow velocity varies, sand grain sizes in sediment traps are similar over distances of 50 km down-canyon, suggesting that grain size is an unfaithful record of down-canyon changes in maximum flow speeds. Sand transported within flow events and sampled in sediment traps is similar to sand sampled from the seafloor shortly after the events, but traps do not contain pebbles and gravel common in seabed deposits. Seabed deposits thus appear to faithfully record the sand component that is transported in the water column during sub-annual turbidity currents

    Development of the Global Earthquake Model’s neotectonic fault database

    No full text
    The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault obser- vations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally
    corecore